
SRV-1-RCM
User’s Guide

©2009 Timothy Jump – This document may be distributed freely in verbatim form provided
that no fee is collected for its distribution (other than reasonable reproduction costs) and this
copyright notice is included.

SRV-1-RCM

Cautions

READ THE REQUIREMENTS SECTION BEFORE SUPPLYING VOLTAGE TO THE SRV-1-RCM.

Users of the Combo Matchport/Motor Driver board should note that although the RCM
supplies operating voltage to the Matchport radio module and the Blackfin controller, it does
not supply V+ or control signals to the H-bridge motor driver. Control can still be sent via the
Blackfin but external V+ must be supplied to the Combo Matchport/Motor Driver board to
power the motor drivers. BE VERY CAREFUL! If external power is supplied to the Combo
Matchport/Motor Driver board the Matchport/Motor Driver board 3.3V regulator should be
removed to prevent the external supply voltage from back-feeding into the RCM.

All the comm. ports run at 3.3v logic.

The analog and digital I/Os run a 5v supply through the center pin.

The motor ports can supply voltage internally (either 6v or 7v through the center pin depending
on the J9 and J10 settings), or externally (check the setting of the P1 and P2 jumpers).

The RCM does not provide access to the following IOs of the Blackfin controller:

7/8/21/22 – (H-bridge controllers)
12 – (SPI_SEL3/SPI_Slave jumper)
17/23 – (GPIO-H0 Serial flow ctrl in/out - Matchport RTS0/CTSO (pins 7/11))
18 – (GPIO-H1 Ultrasonic module trigger (out))
19 – (GPIO-H2 Battery low-voltage detect (bat < 6V == hi))
24/26 – (GPIO-H7/H8 laser’s)
27/28/29/30 – (GPIO-H10/H11/H12/H13 ultrasonic modules 1/2/3/4)
31/32 – (GPIO-H14/H15 (open))

Table of Contents

Cover Page
Cautions
SRV-1-RCM Introduction
RCM Feature Summary

Detailed Descriptions of Functions
Analog Inputs
Digital GPIOs
Motor/PPM Outputs
Comm. Ports
Micro SD Connector

Requirements
SRV-1-RCM Diagram

SRV-1-RCM Introduction
The RCM is an expansion board for the Surveyor Corporation Blackfin Camera Module and is
designed to bring extended robot control functions to the Blackfin Module. All the processing is
handled by the Blackfin. The RCM is an interface that accepts sensor inputs, outputs PPM
signals for motor control, and makes the communications options of the Blackfin easily
accessible. The RCM also acts as the electrical supply interface for the Blackfin, the optional
radio module available with the Blackfin, and all servo motors and sensors that connect to the
RCM. The RCM also has onboard memory in the form of a micro SD slot.

RCM Feature Summary:

o 61 I/Os Total
o 16 Analog inputs (12 bit)
o 16 Digital GPIOs (8-bit) with integrated, programmable 100kΩ pull-up resistors
o 20 Servo/PPM outputs
o 2 SPI
o 2 UART
o 5 I2C
o Micro SD memory slot
o Built in power buses
o Small Size of 3.1”x 3.4”
o RoHS Compliant

Detailed Descriptions of Functions

Analog Inputs
The RCM employees two 8 port Analog Devices 7998 ADCs to allow access to sixteen analog
sensors. The ADCs are I2C addressable:

Register 0x23 reads ports 11-18
Register 0x24 reads ports 21-28

However, with the use of the picoC programming language there are already pre-written
functions to read the analog inputs; i.e. to read the sensor on port 14:

analog(14);

* Each read of an analog port is a single snapshot of what is on that port.

Connection to the analog ports is via a 3-pin connector. The pin pattern is: Ground/v+/Data. All
analog devices are supplied with 5v through the center pin. If any connected analog device
utilizes an external voltage source, the returned logic signal should still meet the 0-5v
expectation of the AD7998. A common ground must also be accessed when external power is
supplied to any analog device.

Digital GPIOs
The RCM employees a 16 port Microchip MCP23017 Digital GPIO with internal, programmable
100kΩ pull-up resistors. The MCP is also I2C addressable:

Register 0x27 is the MCP address
Register 0x00 sets Port A direction
Register 0x01 sets Port B direction
Register 0x12 reads or writes Port A bits
Register 0x13 reads or writes Port B bits

The following code sequence addresses the MCP:

writei2c(int, int, int);

The first parameter/argument takes the device I2C address

writei2c(0x27, int, int); talks to the MCP

The second parameter/argument sets which bank (A or B) is addressed

writei2c(0x27, 0x00, int); talks to Bank A
writei2c(0x27, 0x01, int); talks to Bank B

The third parameter/argument sets individual ports as input/output (1 for input, 0 for output).

Setting ports as input/output is done as a group with each port taking a binary place value.
Since there are 8-ports per bank, each port takes on the identity of each bit in an 8-bit string.
Port 1 equates to bit-1, Port 8 equates to bit-8.

Since binary is true/false (1/0), and input is set as true (1) and output is set as false (0); the
value of the binary 8-bit position sets which port(s) is/are input or output.

So
writei2c(0x27, 0x00, 0x01); sets bit 1 (Port1) on Bank A to input and leaves bits 2-8 (Ports 2-8)

as output.
writei2c(0x27, 0x00, 0x80); sets bit 8 on Bank A to input and leaves bits 1-7 as output.
writei2c(0x27, 0x00, 0x81); sets bits 1 and 8 on Bank A to input and leaves bits 2-7 as output.
writei2c(0x27, 0x00, 0xff); sets all bits on Bank A to input.
writei2c(0x27, 0x00, 0x8D); sets bits 1, 3, 4 and 8 on Bank A to input and leaves bits 2, 5, 6 and

7 as output.

* Replace the middle parameter/argument with 0x01 and Bank B is addressed.

Once the MCP is set for use, the following code will access the MCP to read/write to devices.

readi2c(0x27, 0x12); would read the Bank A ports
writei2c(0x27, 0x12, int); would write to the Bank A ports

readi2c(0x27, 0x13); would read the Bank B ports
writei2c(0x27, 0x13, int); would write to the Bank B ports

Read/Input
Physically the ports are numbered A1-8 and B1-8. When the read instruction is sent, all eight
ports of the same bank are read together. The differentiation between the ports is the value
they return.

Port 1 = 0/1
Port 2 = 0/2
Port 3 = 0/4
Port 4 = 0/8
Port 5 = 0/16
Port 6 = 0/32
Port 7 = 0/64
Port 8 = 0/128

If more than one port is positive/true, the result will be a sum total reading (i.e. 141 to
represent ports 1, 3. 4 and 8 all being true).

* Note, the desired display form (binary, decimal, hexadecimal) can be specified in printf by use
of the appropriate conversion character (%b, %d or %x).

Pull-Up Resistors
Sometimes a pull-up resistor is needed with digital inputs. The MCP has integrated 100kΩ pull-
up resistors that can be programmed as on or off as needed.

To program the pull-up resistors:

Bank A
writei2c(0x27, 0x0c, int);

Bank B
writei2c(0x27, 0x0d, int);

The value placed in the int position will set the pull-ups on/off.

A (0) or false value sets the pull-up resistor off
A (1) or true value sets the pull-up resistor on

As explained in the Read/Input passage above, the actual value to be placed in int will be the bit
value associated with the targeted port. For multiple ports the value placed in the int will be a
sum total of the bits.

* Again, these pull-up resistors only apply to ports that are set as inputs.

Write/Output
All eight ports also write together. For output devices that need to be active a true (1) value
needs to be sent. For output devices that need to be inactive a false (0) value needs to be sent.

Specifying the value by the binary position will set which ports are addressed. As above, with
each port taking a binary place value, each port takes on the identity of its corresponding bit in
an 8-bit string. Port 1 equates to bit-1, Port 8 equates to bit-8.

So
writei2c(0x27, 0x13, 0x01); writes a true (1) to bit 1 (Port 1) on Bank B and leaves bits 2-8 (Ports
2-8) as false (0).
writei2c(0x27, 0x13, 0x80); writes a true (1) to bit 8 on Bank B and leaves bits 1-7 as false (0).
writei2c(0x27, 0x13, 0x81); writes a true (1) to bits 1 and 8 on Bank B to input and leaves bits 2-

7 as false (0).
writei2c(0x27, 0x13, 0xff); writes a true (1) to all bits on Bank B.
writei2c(0x27, 0x13, 0x8D); writes a true (1) to bitts 1, 3, 4 and 8 on Bank B and leaves bits 2, 5,

6 and 7 as false (0).

Connection to the digital ports is via a 3-pin connector. The pin pattern is: Ground/V+/Data. All
digital devices are supplied with 5v through the center pin. If any connected digital device
utilizes an external voltage source, the returned logic signal should still meet the 0-5v
expectation of the MCP. A common ground must also be accessed when external power is
supplied to any digital I/O device.

Motor/PPM Outputs
The RCM employees the 20 port Devantech SD20 servo driver chip. The SD20 is I2C
addressable:

Register 0x61 is the SD20 address

writei2c() is a predefined function within picoC so controlling motors connected to the SD20
simply requires the function call with the appropriately set parameters. The following line of
code will set the motor on port 14 of the SD20 to full speed CCW:

writei2c(0x61, 14, 0xff);

Notice how the address and setting are in hexadecimal, but the port number is the appropriate
decimal associated with the port.

The SD20 outputs pulse widths from 1ms to 2ms in standard mode, but can output customized
pulse widths in the expanded mode. The standard mode accommodates many motor
controllers and servos across their entire range, but the expanded mode will accommodate
many analog servos that only operate across a 90 degree sweep from 1ms to 2ms and need to
range between 0.5ms and 2.5ms for 180 degrees of sweep.

* Again, to note; PPM signals are widely associated with positional servo motors, but many
other types of motors can be driven using R/C PPM signals. Any motor controller that utilizes
PPM wave patterns, whether they be for ant size motors or high voltage/high current motors
can driven through the RCM. Effectively, the RCM with the SD20 can be used to control very
small robots to multi-hundred pound goliath robots.

Motors connect to the SD20 ports via a 3-pin connector. The pin pattern is: Ground/V+/Data.
Voltage to the ports can either be supplied internally or externally. The internal supply can be
set to either 6v or 7v, and each bank of ten ports can supply up to 5A giving a total of 10A
available for motor control. If this is not sufficient then external power can be supplied to the
ports through a specified header.

Setting the SD20 (if needed)

Standard Mode
This is the power-up state with the servo range set in the standard 1mS to 2mS range. Writing
any value greater than zero to Register 21 puts the SD20 into Expanded Mode. Writing a value
of zero (0) to register 21 resets the SD20 to Standard Mode.

Expanded Mode
Expanded mode is used to manually set the PWM pattern of the SD20. PWM is pulse width
modulation with the critical components being the width of each pulse, the range of pulse
widths, and the center position, or offset of the pulse width range from zero.

* The duration between pulses is a standard for R/C type devices and permanently set in the
SD20 so it does not need to be addressed in these settings.

Setting up expanded mode requires writing to three registers of the SD20 (21, 22 and 23). The
following formulas and processes will explain how to determine the values to send to these
registers.

* Be careful with this. Any PWM setting is used for all devices attached to the SD20, so if you
introduce settings tuned toward the device with the widest range but have devices with a
narrower range it is possible to cause the narrow range device to hit/stall at the stops and
potentially burn out.

Register 21
Pulse Width Range (µs) = (255 * 256) / Reg21

Step one is to determine the range of possible pulse widths for the waveforms. This data is
derived from the device(s) being used. Look at the operating range of each device. If the range
is 1ms to 2ms you can operate in standard mode. If it is something like 0.70ms to 2.30ms then
expanded mode is needed.

To determine the range of pulse widths needed simply subtract the narrowest pulse needed
from the widest pulse needed. For our example 0.70ms to 2.30ms the difference (2.30-0.70) is
1.60ms.

Now, to derive the value to write to register 21, simply insert the value of the pulse width range
determined above into the formula

Pulse Width Range (in µs) = (255 * 256) / Reg21

or

Reg21 = (255 * 256)/pulse width range (in µs)

* Note how this formula requires the pulse width range to be in microseconds. Most of the
pulse width ranges for motors and motor controllers are listed in milliseconds. Be sure to
convert milliseconds to microseconds (i.e. multiply by 1000).

For a pulse width range of 1.60ms (1000)

Reg21 = (255 * 256)/1600 = 40.8

Double checking, insert the new value of register 21 into the original formula.

* Since the register does not accept floating point numbers, the calculated value needs to be
converted to an integer value. To keep from exceeding the allowable range of the servo it is
best to round up.

Pulse Width Range (in µs) = (255 * 256) / 41 = 1592µs or 1.592ms

The value of 41 for register 21 is confirmed.

This value written to register 21 just sets the pulse width range. The range now needs to be
shifted from starting at zero to actually starting at the specified low position (0.704 in our
example). This requires an offset to be written to registers 22-23.

Registers 22-23
(Reg22:23 +20) (µs) = offset position

To calculate the offset simply set the equation equal to the offset position and solve.

* This formula also requires units in microseconds, so the offset position (the targeted low
position) needs to be converted before applying to the equation (i.e. multiply ms by 1000)

For an offset position of 0.704ms (1000)

(Reg22:23 +20) (µs) = 704

(Reg22:23) = 704 - 20

(Reg22:23) = 684

All the registers of the SD20 are 8-bit. In an 8-bit system the highest number available is 255.
The way to get a value like 684 takes two registers, thus 22:23. When splitting a number across
two registers, one register becomes the high byte (Register 22 in this case) and one the low
byte (Register 23 in this case). Also, it is best to use the 8-bit binary system to derive the full
numerical value sought. So, with two registers, run two 8-bit strings together (like a 16-bit
string) and derive the targeted value.

For 684

00000010 10101100

* If you are familiar with two-byte binary you may generate this type of answer on your own. If
not, use a decimal to binary converter (which can be found with an internet search). Also, the
binary values need to be converted to hexadecimal to write to the registers so use a binary to
hexadecimal converter to get these values. When converting to hexadecimal convert each
byte as its own single byte, 8-bit string.

00000010 is 2 in decimal and 0x02 in hexadecimal (this is the high byte/register 22)
10101100 is 172 in decimal and 0xAC in hexadecimal (this is the low byte/register 23)

So, to get the offset of 0.704ms:

Set Register 22 = 0x02
Set Register 23 = 0xAC

Writing the New Register Values
To write to the registers (21, 22 and 23) send the following code (based on the example above):

writei2c(0x61,21,0x41);
delay(100);
writei2c(0x61,22,0x02);
delay(100);
writei2c(0x61,23,0xAC);
delay(100);

Comm. Ports
The RCM interfaces directly to the comm. ports of the Blackfin giving access to two SPI comm.s,
two UART comm.s, and five I2C access ports. All the comm. ports run at 3.3V logic; and
addressing relevant to the Blackfin is exactly what is used to connect to the comm. ports of the
RCM.

RCM Blackfin

SPI 1 SEL pin 13 (SPI_SEL2)
SPI 2 SEL pin 20 (GPIO-H3)

Micro SD (SPI) pin 25 (GPIO-H8)
UART 1* pins 3/4
UART 2 pins 5/6

I2C (1-5) pins 14/15

* The Matchport radio module connects to pins 3 and 4 of the Blackfin S32 header, so U1 is
unavailable if the Matchport is used.

Micro SD Connector
There is currently a '$S' console command that can detect the presence and size of an SD card.
Additional read/write commands will be added later.

Requirements

Input Voltage: 7.5V to 30V (A minimum of 6V can be used, but this will not be sufficient to
power servo motors internally. However, if only motor controllers that require no voltage
through the center pin are used then 6V is sufficient to drive the sensor ports, the SD20 control
signal and the 3.3v logic supply to the Blackfin and optional radio module.)

DO NOT REVERSE THE CONNECTION TO THE INPUT VOLTAGE. BY DESIGN, TO ALLOW FOR LOW
VOLTAGE SUPPLIES, NO REVERSE POWER SUPPLY PROTECTION WAS ADDED TO THE RCM.

The RCM must be connected to the Blackfin via S32 header (RCM supplies 3.3v logic to the
Blackfin and optional radio module.)

Jumper blocks P1 and P2 must be in place for internal power to be supplied to the motor ports
(P1 relates to motor ports 1-10, P2 relates to motor ports 11-20)

* If external power is required, remove P1 and/or P2 and feed external power at the P1/P2
header location (v+ to the center pin, ground to the outer pin)

DO NOT CONNECT EXTERNAL POWER TO THE INNER PIN (INTERNAL VOLTAGE SUPPLY PIN) ON
P1/P2.

Jumper blocks J9 and J10 must be set to either 6v or 7v to regulate the power to the motor
ports (J9 relates to motor ports 1-10, J10 relates to motor ports 11-20)

* Caution should be taken here to match the supply voltage to the motors/motor controller
being used. Standard analog servos operate from 4.8v to 6v. The new digital robot servos
operate from 6v to 7.2v. Running a digital robot servo at 6v will work fine, but higher speed
and torque will be realized running at 7v. Running standard analog servos at 7v will also
realize greater speed and torque out of the motors, but at 7v the motors are stressed and
may burn out quickly.

NOTE
All processing is through the Blackfin Camera Module. Refer to the Blackfin user documents for
instructions on Blackfin functions.
SRV-1 Blackfin Set-up (http://www.surveyor.com/blackfin/SRV_setup_bf.html)
SRV-1 Control Protocol (http://www.surveyor.com/SRV_protocol.html).

SRV-1-RCM Diagram

P2 Jumper P1 Jumper

J9 and J10 Jumpers
(6v/7v selection for

motor ports)

Voltage Input

Analog Inputs
11-18

Motor Ports
11-20 Motor Ports

1-10

SPI Ports
SPI1 and SPI2

Digital GPIOs
A1-8/B1-8

UART Ports
U1 and U2

I2C Ports
1-5

S32 Header
Connects to Blackfin

Analog Inputs
21-28

Micro SD
on the

Underside

