
RP6 ROBOT BASE

RP6-BASE

www.61mcu.com

http://www.arexx.com/

RP6 Robot System Manual

- English -

VERSION v2.0

IMPORTANT INFORMATION!
Please read carefully!

Before you start operating the RP6 or any of the additional equipment,
you must read this manual and the manuals for add-on modules com-
pletely! The documentation contains information how to operate the
systems properly and how to avoid dangerous situations! Furthermore
the manuals provide important details, which may be unknown to av-
erage users.
Paying no attention to this manual will cause a loss of warranty! Addi-
tionally, AREXX Engineering cannot be made responsible for any dam-
ages caused by neglecting the manual's instructions!

Please pay special attention to the chapter “Safety instructions”!

Do not connect the USB Interface to your PC before you
have read chapter 3 – “Hardware and Software Setup”
and completed the software installation!

Contents
1. Introduction ... 6

1.1. Technical support .. 7
1.2. Scope of delivery .. 7
1.3. Features and technical Data ... 8
1.4. Was can the RP6 do? ... 11
1.5. Application proposals and ideas ... 12

2. The RP6 in detail ... 13
2.1. Control System ... 14

2.1.1. Bootloader...16
2.2. Power Supply .. 16
2.3. Sensors ... 17

2.3.1. Battery Voltage Sensor..17
2.3.2. Light Sensors (LDRs)...17
2.3.3. Anti Collision System (ACS)..18
2.3.4. Bumpers..19
2.3.5. Motor Current Sensors...19
2.3.6. Encoders...20

2.4. Drive System .. 21
2.5. Expansion System ... 22

2.5.1. The I²C Bus...23
2.5.2. Expansion Connectors...24

3. Hardware and Software Setup ... 26
3.1. Safety Instructions .. 26

3.1.1. Electrostatic Discharges and Shorts.....................................26
3.1.2. Environment of the Robot..27
3.1.3. Supply Voltage...27

3.2. Software Setup ... 28
3.2.1. The RP6 CD-ROM..28
3.2.2. WinAVR - for Windows...29
3.2.3. AVR-GCC, avr-libc and avr-binutils - for Linux29

3.2.3.1. Automatic install script ...31
3.2.3.2. Manual install procedure ...32
3.2.3.3. Setting the path ..33

3.2.4. Java 6 ..34
3.2.4.1. Windows ..34
3.2.4.2. Linux ...34

3.2.5. RP6Loader...35
3.2.6. RP6 Library, RP6 CONTROL Library and Example programs.....35

3.3. Connecting the USB Interface – Windows 36
3.3.1. Check if the device is properly connected.............................37
3.3.2. Driver uninstall...37

3.4. Connecting the USB Interface – Linux 38
3.5. Finalizing Software installation .. 38
3.6. Inserting Batteries ... 39
3.7. Charging the Batteries ... 41
3.8. The first test ... 41

3.8.1. Connecting the USB Interface and start RP6Loader................42
4. Programming the RP6 .. 51

4.1. Configuring the source code Editor .. 51
4.1.1. Creating menu entries...51
4.1.2. Configure Syntax Highlighting...54
4.1.3. Opening and compiling sample projects...............................56

4.2. Program upload to the RP6 ... 58
4.3. Why C? And what's “GCC”? .. 59
4.4. C – Crash Course for beginners ... 60

4.4.1. Literature...60
4.4.2. First program...61
4.4.3. C basics...63
4.4.4. Variables...64
4.4.5. Conditional statements..66
4.4.6. Switch-Case...68
4.4.7. Loops..69
4.4.8. Functions...70
4.4.9. Arrays, Strings, Pointers..73
4.4.10. Program flow and interrupts...74
4.4.11. The C-Preprocessor...75

4.5. Makefiles .. 76
4.6. The RP6 function library (RP6Library) 77

4.6.1. Initializing the microcontroller...77
4.6.2. UART Functions (serial interface)..78

4.6.2.1. Transmitting data ..78
4.6.2.2. Receiving data ..80

4.6.3. Delay and timer functions..81
4.6.4. Status LEDs and Bumpers..84
4.6.5. Read ADC values (Battery, Motorcurrent and Light sensors)....89
4.6.6. ACS – Anti Collision System...91
4.6.7. IRCOMM and RC5 Functions...93
4.6.8. Power saving functions..95
4.6.9. Drive system functions..95
4.6.10. task_RP6System()...101
4.6.11. I²C Bus Functions..102

4.6.11.1. I²C Slave ..102
4.6.11.2. I²C Master ..105

4.7. Example Programs ... 109
5. Experiment Board .. 121
6. Closing words .. 122
 APPENDIX .. 123

A - Troubleshooting..123
B – Encoder calibration...130
C – Connector pinouts..132
D – Recycling and Safety instructions...134

RP6 ROBOT SYSTEM - 1. Introduction

1. Introduction
The RP6 is a low cost autonomous mobile robot system, designed for beginners as
well as experienced electronics and software developers as an introduction to the
fascinating world of robotics.

The robot is delivered completely assembled. Thus it is very well suited for all users
who are unexperienced with soldering and tinkering and want to concentrate on soft-
ware development. However, implementing your own circuits and adding additional
things to the robot is possible, too! In fact, the RP6 offers a lot of expansion possibilit-
ies and may be used as a platform for a variety of interesting electronic experiments!

It is the successor of the very successful "C-Control Robby RP5", which had been re-
leased in 2003 by Conrad Electronic SE. The shortcut “RP5” is to be interpreted as
"Robot Project 5". The new robot and the predecessor system do not have too much
in common except for the mechanics. The C-Control 1 Microcontroller of Conrad Elec-
tronic has been replaced and thus the new robot cannot be programmed in Basic any-
more. Instead, the far more powerful ATMEGA32 from Atmel, which is programmable
in C is used. Additionally we plan to provide an expansion module for adapting the
latest C-Control modules (e.g. CC-PRO MEGA128) to the robot. This module will allow
the system to be programmed in the more simple Basic language and provides a great
number of additional interfaces and lots of additional memory.

The new design includes an USB interface, a new expansion system with improved
assembly options, high resolution odometry sensors (resolution is 150x higher com-
pared to the predecessor system), a precise voltage regulator (this was only provided
as an expansion module for the old system), a bumper composed of two mi-
croswitches with long levers and many other things. The already included experiment
expansion module for your own circuits is also a very useful addition. Compared to the
predecessor system, the price performance ratio has been improved considerably.

Basically the mechanical design has been adopted from the RP5 system. However, we
did optimize the design for lower noise operation and now it provides some additional
drilling holes for mechanical expansions.

The RP6 robot has been designed to be compatible with our other robots, ASURO and
YETI, both using the smaller ATMEGA8 and identical development tools (WinAVR, avr-
gcc). In contrast, ASURO and YETI are delivered as do-it-yourself construction kits
and have to be assembled by the user. The RP6 has been designed for the more de-
manding users, looking for good expansion options, bigger microcontrollers and more
sensors.

Several expansion modules are planned or already available and can be used for ex-
panding the robot’s capabilities. For example, there will be the previously mentioned
C-Control expansion, an expansion module providing an extra MEGA32 (already avail-
able) and of course the experiment expansion board for individual electronic circuitry,
which is also available seperately. You can stack several of these modules onto the ro-
bot.

Other interesting modules are planned shortly and of course you may develop your
own expansion circuitry!

We wish you a lot of fun and success with your RP6 Robot System!

- 6 -

RP6 ROBOT SYSTEM - 1. Introduction

1.1. Technical support
You may contact our support team via internet as follows (please read
this manual completely before contacting the support! Reading
the manual carefully will answer most of your possible questions
already! Please also read appendix A – Troubleshooting):

- through our forum: http://www.arexx.com/forum/
- by E-Mail: info@arexx.nl
You will find our postal address in the legal notice at the beginning of
this manual. All software updates, new versions of this
manual and further informations will be published on our homepage:

http://www.arexx.com/
and on the robot’s homepage:

http://www.arexx.com/rp6

1.2. Scope of delivery
You should find the following items in your RP6 box:

● Completely assembled Robot
● RP6 USB Interface
● USB A->B cable
● 10pin flat cable
● RP6 CD-ROM
● Quickstart manual

● RP6 Experiment board
● 4 pcs 25mm M3 distance bolts
● 4 pcs M3 screws
● 4 pcs M3 nuts
● 4 pcs 14pin connectors
● 2 pcs 14pin flat cable

- 7 -

http://www.arexx.com/rp6
http://www.arexx.com/
mailto:info@arexx.nl
http://www.arexx.com/forum/

RP6 ROBOT SYSTEM - 1. Introduction

1.3. Features and technical Data
This section provides an overview of the robot's features and an introduction of some
basic keywords, to make you familiar with the terminology used in this manual. Most
of these keywords will be explained in later chapters.

Features, components and technical data of the RP6 ROBOT SYSTEM:

● Powerful Atmel ATMEGA32 8-Bit Microcontroller

◊ Speed 8 MIPS (=8 Million Instructions per Second) at 8MHz clock frequency

◊ Memory: 32KB Flash ROM, 2KB SRAM, 1KB EEPROM

◊ Freely programmable in C (using WinAVR / avr-gcc)!

◊ ... and many more features! Further details will be given in chapter 2.

● Flexible expansion system, based on the I²C-Bus

◊ Only two signals required (TWI -> "Two Wire Interface")

◊ Transfer speed up to 400kBit/s

◊ Master->Slave architecture

◊ Up to 127 Slaves may be connected to the bus simultaneously

◊ Very popular bus-system. The market provides a lot of standard ICs, sensors and
other components, which may often be connected directly.

● Symmetrical mounting possibilities for expansion modules at front and rear

◊ Theoretically you may stack any number of expansion modules, but the supply
capability and the overall weight allows a maximum of about 6 to 8 modules
(3 to 4 modules each at front and rear).

◊ The mainboard provides 22 free 3.2mm mounting holes and the chassis provides
another 16, summing up to 38 mounting holes in total – additionally the chassis
provides ample space for individual drills.

● Experiment PCB already included in delivery (see scope of delivery photo)

● USB PC Interface for program uploads from PC to microcontroller

◊ Wired connection for maximum transfer speed. Program upload will usually run at
500kBaud, filling the total free memory space (30KB, 2KB are reserved for the
Bootloader) within seconds.

◊ The interface may be used for programming all available expansion modules for
the RP6 with AVR Microcontrollers.

◊ It may be used for communication between the robot and expansion modules. For
example you can use this for debugging purposes by transferring measurement
data, text messages and other data to the PC.

◊ The interface driver provides a virtual comport (VCP) for all popular operating sys-
tems including Windows 2K/XP/Vista and Linux. The VCP can be used in standard
terminal programs and customized software.

- 8 -

RP6 ROBOT SYSTEM - 1. Introduction

◊ The RP6Loader Software for Windows and Linux allows comfortable program up-
loads. It also contains a small terminal for communicating with the robot through
text messages.

● Powerful caterpillar drive unit in combination with a new gearing system for
minimising noise (compared to the predecessor CCRP5...)

◊ Two powerful 7.2V DC-Motors

◊ Maximum speed ca. 25 cm/s – depending on charge state and quality of batteries,
total weight and other conditions!

◊ Self-lubing, sintered bearings at all four 4mm wheel-axles

◊ Two rubber tracks

◊ Capable of traversing small obstacles (up to ca. 2 cm height) like carpet edges,
thresholds or ramps of up to 30% steepness (with mounted bumper switches).
Removing the bumpers and restricting the number of modules to a maximum of 2
modules allows the robot to drive over ramps with up to 40% steepness.

● Two powerful MOSFET Motor-drivers (H-Bridges)

◊ Rotational velocity and direction can be controlled by the Microcontroller system.

◊ Two current sensors providing a measurement range up to ca. 1.8A for each
motor. This allows to quickly sense blocked or heavily loaded motors.

● Two high resolution encoders for speed- and motion-control

◊ Resolution 625 CPR ("Counts Per Revolution") which implies the system counts
625 segments of the codewheel per revolution of a wheel! (150x higher resolution
compared to the predecessor system CCRP5 with only ca. 4 CPR).

◊ Exact and fast speed measurement and control!

◊ High resolution of ca. 0.25mm per counted segment!

● Anti-collision-system (ACS) which can detect obstacles with an integrated IR
receiver and two IR diodes aligned to left and right

◊ Detects obstacles in the middle, left or right of the robot's front.

◊ Sensitivity and transmitter power are adjustable, allowing reliable detection of
badly reflecting objects.

● Infrared Communication-system (IRCOMM)

◊ Receives signals of standard universal infrared Remote Controls of TVs or Video
recoders. You may control your robot with a standard (RC5-) remote control! The
protocol may be changed in software, but we provide only an implementation of
the standard RC5-protocoll by default.

◊ May be used for communication with several robots (using direct line of sight or
reflections from the ceiling and walls) or for transmitting telemetry data.

● Two light sensors – e.g. for light intensity measurement and light source tracking

● Two bumper sensors for collision detection

● 6 Status LED’s – for sensor and program status displays

◊ Four LED Ports can also be used for other functions if necessary!

- 9 -

RP6 ROBOT SYSTEM - 1. Introduction

● Two free Analogue/Digital Converter (ADC) Channels for external sensor
systems (Alternatively available as standard I/O Pins).

● Accurate 5V voltage regulation

◊ Maximum current supply: 1.5A

◊ Large copper-area for heat dissipation to the PCB

◊ Constant current should not get higher than 1A. More than this requires extra
cooling! We recommend a maximum constant current value below 800mA.

● Replaceable 2.5A fuse

● Low standby current of less than 5mA (4mA typ. and ca. 17 up to 40mA in use,
of course this depends on system load and activity (LEDs, Sensors etc.). These
values only include electronic circuits and do not take motors and expansion
modules into account!).

● Power supply with 6 NiMH Mignon accumulator batteries (not included!)

◊ E.g. Panasonic or Sanyo (NiMH, 1.2V, 2500mAh, HR-3U , Size AA HR6) or Ener-
gizer (NiMH, 1.2V, 2500mAh, NH15-AA)

◊ Operating time ca. 3 up to 6 hours depending on usage and quality/capacity of
the batteries (if the engines are not being activated too much, the robot may be
operated a lot longer. These operating time specifications are only for the robot
system itself, without expansion modules).

● Connector for external battery chargers – the robot’s main power switch
toggles between “Charge/Off” and “Operate/On”.

◊ This may be adapted by using a few solder pads on the PCB, allowing you to
connect the robot with external power supplies or additional batteries.

◊ Any external chargers that are suitable of charging 6 NiMH Cells in series may be
used. External chargers drastically vary in performance and additional options,
providing charging times between 3 and 14h. You need a charger with round
5.5mm plug.

● The Mainboard provides 6 small expansion areas (and additionally 2 very tiny
areas on the small sensor PCB on the front) for your own sensor circuits, e.g. for
implementing additional IR sensors to improve obstacle detection. Expansion areas
may also be used for mounting purposes, e.g. for fixing mechanical objects.

● Lots of expansion possibilities!

Furthermore we supply quite a few C example programs and an extensive function lib-
rary, for comfortable software development.

The robot’s Website will soon provide additional programs and software updates for
the robot system and its expansion modules. Of course we invite you to share your
own programs with other RP6 users via internet. The RP6Library and the example pro-
gram files are released under the Open Source Licence GPL!

- 10 -

RP6 ROBOT SYSTEM - 1. Introduction

1.4. Was can the RP6 do?
Well, not much - directly taken out of the box!

The Software enables the RP6 to actually do something – what this is exactly, is up to
you and your creativity to teach the robot how to perform well. The attraction of ro-
botics bases on the fascinating process of implementing new ideas or optimizing and
improving excisting things! Of course you may start by simply executing and modify-
ing the prepared sample programs to have a look at the standard features, but it is
not limited to that!

The following list mentiones only a few examples and it is up to you to expand the
RP6. There are hundreds of possibilities (s. next page for example).

Basically the RP6 can …:

● ... cruise around autonomously (this means independently, without remote control)

● ... avoid obstacles

● ... follow light sources and measure light intensity

● ... detect collisions, blocked engines, low battery level and react properly on that

● ... measure and control the rotational speed of the motors – virtually independently
of the power level of batteries, weight, etc. (this is performed with the high resolu-
tion encoders)

● ... move for a given distance, rotate for specific angles and measure the driven dis-
tance (see chapter 2 for deviations)

● ... move geometric figures, e.g. circles, polygons and others

● ... exchange data with other robots or devices. Commands may be received from
standard TV/Video/HiFi remote controls and you will be able to control your robot
just like a remote controlled car.

● ... transfer sensor data and other data to a PC with the USB Interface

● ... be expanded easily by using the flexible bus-system!

● ... modified according to your ideas. Just have a look at the schematics on the CD
and the PCB! But please restrict modifications to those you fully understand! It is
usually a better idea to start off by using an expansion board – particularly if you
are unexperienced in soldering circuits and electronics in general.

- 11 -

RP6 ROBOT SYSTEM - 1. Introduction

1.5. Application proposals and ideas
The RP6 has been designed with good expansion possibilities. If you equip your RP6
with some additional sensor circuits, you can “teach” your Robot some of the following
things (some of the following tasks will turn out to be quite complex and the list is
roughly sorted in order of complexity):

● Expand the robot with additional controllers providing more CPU power, add addi-
tional memory or simply some I/O-ports and ADCs as it will be discussed in the ex-
ample programs with simple I²C port expanders and ADCs.

● Output sensor data and text on a LC-Display

● React on noise and generate acoustic signals

● Measuring the distance to obstacles with additional ultrasonic sensors, infrared-
sensors or similar in order to achieve better collision avoidance

● Track black lines on the floor

● Track and trace other robots or objects

● Control the robot from your PC by using infrared signals (this needs extra hardware.
Unfortunately it does not work with standard IRDA interfaces). Alternatively you
might start straight away by using wireless RF modules.

● Control the RP6 by using a PDA or Smartphone (in this case we suggest to mount
these devices to the robot instead of using them as remote control. But that is pos-
sible, too!)

● Collect objects (e.g. tea lights, marbles, tiny metal objects …)

● Attach a tiny robot arm to grasp objects

● Navigate with the help of an electronic compass and/or infrared beacons (made up
of small towers equipped with a number of IR-LEDs and positioned at a well known
location), in order to determine the robot’s position and head for a given location.

● Providing a number of robots equipped with a ball kick and handling mechanism and
some extra sensors you might be able to raise a team of robots playing soccer!

● … anything else, which might come to your thoughts!

However, first of all you have to read this manual and become familiar with robotics
and programming. The previous list of ideas is just meant as a little motivation.

And if programming does not succeed at first glance, please do not give up immeadi-
ately and throw everything out of the window: all beginnings are difficult!

- 12 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

2. The RP6 in detail
This chapter describes the most important hardware components of the RP6 ROBOT
SYSTEM. We will discuss the electronics, the microcontroller and the interaction of
software and hardware. If you are already familiar with microcontroller technology
and electronics, you will probably just glance through this chapter. Beginners in robot-
ics however should study this chapter to gain insight to the RP6 basics.

If you do not want to wait and rather like to test the robot, then please proceed to
chapter 3, but return to this chapter later on as it certainly contains a number of use-
ful explanations of the robot’s programming details. And you do want to know what is
controlled with the software and how this works, don’t you?

We will not go deeply into details, but still a few topics in this chapter might be hard
to understand – the author tried to explain things as simple as possible.

If you wish to study special topics in detail you may also look for additional informa-
tion at http://www.wikipedia.org/, which definitely is a good starting point for most
topics.

Images often tell more than words and that is why we start with an overview diagram
of the RP6. The diagram shows a drastically simplified schematic of the robot’s elec-
tronic components and how they are connected together:

- 13 -

http://www.wikipedia.org/

RP6 ROBOT SYSTEM - 2. The RP6 in detail

We can divide the Robot in five main functional units:

● Control System

● Power Supply

● Sensors, IR Communication and Displays (Sensors) – everything communicating
with the outside world and measureing physical values.

● Drive System

● Expansion System

2.1. Control System
As you can see in the diagram, the robot’s central unit is an
ATMEL ATMEGA32 8-Bit Microcontroller (see fig.).

A microcontroller is a complete computer in a single chip. This
microcontroller differs from bigger computers (e.g. your PC) by
providing less peripherals than the big ones. Of course, the tiny
processor does not have a normal hard disk drive and Gigabytes
of RAM. A microcontroller does not need that much memory.
The MEGA32 provides “only” 32KB (32768 Bytes) Flash

ROM – which might be compared to a normal “hard disk drive” - or nowadays a flash-
drive. This Flash ROM is used to store all program data. The Random Access Memory
(RAM) size is limited to 2KB (2048 Bytes) and is already more than sufficient for our
needs. Imagine for comparison the controller of the old CCRP5 Robot with only 240
Bytes RAM, which was almost completely reserved for the Basic Interpreter.

But what on earth enables a microcontroller to work with this tiny memory capacity?
That’s simple: The processor neither handles huge amounts of data nor does it need
to provide an operating system such as Linux or even Windows and it does not need
to show a complex graphical interface or serve similar tasks. There will be just one
program running and that’s our own one!

These limitations are by no way a disadvantage, but one of the main advantages of
microcontroller systems compared to large computers (additionally we may include
power consumption, size and cost)! The processor is designed to handle jobs in known
time slots (also called “realtime”). Usually we do not have to share the processor’s
power with a great number of processes as in a standard PC and programmers are
able to carefully determine the time slot for any special function module.

The RP6 controller runs at 8MHz, which enables a processing speed of 8 Million in-
structions per second. The processor would even allow up to 16MHz clock, but we use
the slower clocking option which allows some power savings. The machine is still fast
enough for all of our standard jobs! Again we are comparing to the controller of the
old predecessor CCRP5 with a 4MHz clock, allowing only approximately 1000 (inter-
preted) Basic instructions per second. For this reason the ACS control had to be man-
aged by another slave controller on that old Robot – we do not need this slave pro-
cessor anymore! And whoever needs more processor power may add one or more
controllers to the expansion interface. The additionally available RP6 Control M32 Ex-
pansion Module provides an additional MEGA32, which is clocked with the maximum
16MHz clock frequency.

- 14 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

The controller is communicating to the world outside via 32 I/O Pins ("Input/Output
Pins"), organized in "Ports", each composed of 8 I/O Pins. This way the MEGA32
provides 4 "Ports": PORTA to PORTD. The controller is able to read the logical status
of these ports and process the information in software. Of course, the processor will
equally use the ports to output logical signals in order to control small loads up to 20
mA currents (e.g. LEDs).

Additionally the controller provides a number of integrated hardware modules for spe-
cial tasks. Implementing these tasks in software would normally be either very diffi-
cult or even impossible. One of these special tasks is timing. Three Timers for count-
ing clock periods are available. The timer modules are completely independent from
program flow. In fact, the microcontroller may even process other jobs while waiting
for a programmed counter level.

RP6 is using one of the timers to generate PWM signals (PWM="Pulse Width Modula-
tion") for speed-control of the motors and as soon as the timer has received appropri-
ate input parameters it will manage this task in background. We will discuss more de-
tails of the PWM signal generation in the chapter “Drive System”.

For example some other modules of the MEGA32 are:

● A serial interface (UART) for PC-communication with the RP6 USB Interface. Using
this interface you might also connect another microcontroller with an UART, as long
as the USB Interface is not connected.

● The "TWI"-module (="Two Wire Interface") providing the I²C Bus for expansion
modules.

● An Analog-to-Digital Converter (ADC) providing 8 input-channels for measuring
voltages with 10bit resolution. RP6 is using the ADC for monitoring the battery
voltage level, motor current-sensors and light intensity with two light-dependant
resistors.

● Three external interrupt inputs for generating interrupt signals, which will interrupt
the program flow in the controller and force the program to jump to a special "Inter-
rupt Service Routine". The microcontroller will then process this routine immeadi-
ately and return back to the normal program. We will be using this programming
feature for the odometry sensors. We will discuss this sensor in detail later on.

The integrated hardware modules do not have their own individual pins, but may be
used alternatively instead of standard I/O Pins. Normally you may freely choose these
special function mapping for the I/O Pins, but the RP6 almost completely provides a
standard configuration (as it is hard-wired to all components) for pins and modifying
the standard configuration will hardly be useful.

The MEGA32 provides a lot of other things, which cannot be de-
scribed in detail in this manual. You get more information on this in
the datasheet of the manufacturer (which can be found on the RP6
CD-ROM).

- 15 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

2.1.1. Bootloader

There is a so called Bootloader located in a special memory area of the
microcontroller. This tiny program is responsible for loading new user programs into
the microcontroller’s memory via the serial interface. The Bootloader communicates
with the the RP6Loader software on the host PC. Like this, no additional programming
hardware is required. The USB Interface can be used for communication with the con-
troller through text messages and additionally to program the controller. However
there is one drawback in using a Bootloader: it needs 2KB of the flash memory, which
will leave 30KB free memory for your own programs. This does not bother us too
much as there is plenty of room even for very complex programs (compared to the
7KB free memory of the tiny ASURO robot)!

2.2. Power Supply
Of course the robot needs energy. The RP6 is carrying this energy in form of 6 accu-
mulator batteries. Operating time will heavily depend on battery capacity and al-
though the electronic systems will consume relatively small amounts of energy the
bulk load of energy will end up in the motors, depending on their load.

In order to provide long operating times you might favour batteries with ample capa-
cities of up to 2500mAh. Capacities of 2000mAh however will be useable as well. High
quality batteries will provide between 3 to 6 operating hours, depending on motor
load and battery quality. You will need 6 batteries, summing up to a voltage of 6x
1.2V = 7.2Volts. The block schematic diagram labels this battery voltage "UB" (= "U-
Battery", U is the standard letter for voltage in electrical engineering formulas). "UB"
is defined as a nominal voltage only, as the voltage may vary over time. Completely
charged NiMH batteries can deliver up to 8.5V! The voltage drops while the Battery is
discharged and may change drastically, depending on load and quality as well. The
critical value for this is the internal resistance.

Of course, an altering supply voltage is not useable for sensor measurements. More
important however is the limited operating voltage range of semiconductor compon-
ents. The microcontroller for instance might be destroyed by applying voltages too
high over 5V. Therefore we have to reduce and stabilize the voltage level to a well
defined level.

This is performed by an integrated voltage regulator capable of
supplying a current up to 1.5A (see figure). At 1.5A this device
would dissipate a lot of heat and therefore it is attached to a
large copper plane on the PCB. Even with this heat sink we sug-
gest to limit currents over 1A to a few seconds only. Otherwise
you will have to attach an additional heat sink.

Continuous current load should be limited to about 800mA. Such
a heavy load would quickly discharge batteries anyway.

Under normal load conditions and without expansion modules
the robot will not draw more than 40mA, unless the IRCOMM

transmitter is active. This current level will not cause any problems for the regulator
and it can supply enough power for lots of expansion board. Usually the expansions
will need something in the range of 50mA, if no motor loads, power LEDs, etc. are
used on them.

- 16 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

2.3. Sensors
Most sensors have been mentioned in preceding chapters, but now we will have a
closer look at them.

In the overview diagram you will find sensors outside of the blue-coloured area
“Sensors”. Actually these sensors belong to other modules. However, the odometry
encoders, the motor current sensors and the battery voltage sensor are sensors and
will be discussed in this chapter, too!

2.3.1. Battery Voltage Sensor

Basically this sensor is a simple voltage divider consisting of two resistors in series.
We can assume to have a set of batteries with a maximum voltage of 10V. 6 NiMH
batteries will certainly never exceed this level. The ADC reference voltage, which is
compared to the monitored voltage, is set to 5V. The maximum 5V operating voltage
of the Microcontroller must not be exceeded at any time. For this reason the mon-
itored voltage will have to be divided by 2. To achieve this we use the voltage divider
with two resistors, matching the monitored voltage to the ADC’s voltage range.

The ADC measures the voltage at a resolution of 10 Bits (which implies a value range

between 0 and 1023 units), resulting in a voltage resolution of
10V
1024= 9.765625mV .

A measurement value of 512 units corresponds to 5V and 1023 to approximately 10V!
These limits are usually not reached with 6 normal NiMH batteries!

The measurement is not too accurate, as we are not using precision resistors. A few
percent tolerance has to be taken into account. The reference voltage is not accurate
as well and may be fluctuating in heavy load conditions. We do not care about these
tolerances, as we only need an indicator for checking the discharging limit of the bat-
teries. If you need to determine the exact voltages, you will need to use a Multimeter
to check the exact voltage values and then add correction values in software.

If you can accept tolerances you may even directly estimate the voltage from the ADC
value: 720 units are corresponding roughly to 7.2V, 700 to 7.0V and 650 to 6.5V. A
value of constantly 560 can be considered as empty batteries.

2.3.2. Light Sensors (LDRs)

At the front side of a small sensor-PCB you may spot two so-
called LDRs (="Light Dependant Resistors"), which are aligned to
the left and to the right respectively. There is a black partition
wall between the two sensors in order to prevent light entering
the “wrong” side of the light sensor system. Just like the Voltage
sensor, both light sensors form a voltage divider together with a

resistor, but here to determine the light intensity. In this case, the 5V rail is divided as
well, but now we have a variable resistor. The division relation will change according
to the surrounding light intensity and provide a light dependant voltage level to one of
the ADC channels!

The voltage difference between both sensors may be used to determine at which side
of the robot the brightest source of light is located: left, right or in the middle. A suit-
able program can trace a bright torch in a darkened room or guide the robot to the

- 17 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

brightest spot in the room! For example if you illuminate the floor with a very bright
halogen-torch, the robot will follow the bright light spot on the floor.

Of course you may try the opposite: the robot could be programmed to hide from
bright light sources.

You can refine this by mounting one or two additional LDRs at the backside of the ro-
bot. By using only the two sensors which robot has by default, it can not distinguish
between bright light in the front and in the back too well. Two of the A/D-converter
channels are still free...

2.3.3. Anti Collision System (ACS)

From the software's point of view, the most complex Sensor is the
ACS – the “Anti Collision System”! The ACS consists of an integrated
infrared (IR)-receiver circuit (see fig.) and two IR LEDs, located at
the left and right front-side of the sensor PCB. The Microcontroller is
controlling the IR-LEDs directly. The controlling functions can be
changed and improved by yourself if necessary! The predecessor
model had a special controller for this purpose and the user could not
modify the software of this device.

The IR LEDs are transmitting short infrared pulses modulated with
36kHz, which can be detected by the IR-receiver. Whenever IR-

pulses are reflected by an object and received back by the IR-receiver, the microcon-
troller may react to the situation and start an escape manoeuvre. In order to avoid
too much sensitivity, the ACS routines will delay detection events until the system has
received a predefined number of pulses within a small period of time. Additionally, the
ACS synchronizes the detection with the RC5-receiver routines and will not react on
RC5-signals from TV/Hifi remote controls. Other codes however may interfere with the
ACS and the robot may try to avoid non-existent obstacles!

Given that the ACS has one IR LED aligned to the left and one to the right, it can
roughly determine whether the obstacle is in the middle, left or right.

The system allows you to change the pulsed intensity of both IR LEDs at three levels.
But even at the highest current level, the ACS may not detect all obstacles reliably.
This is greatly dependant on surface reflectivity of the obstacles!

Of course a black object will reflect less IR-light compared to a white obstacle and a
reflecting square-edged object may lead the IR-light mainly into a few special direc-
tions. Therefore the ACS range is drastically depend on obstacle-surface! This depend-
ency must be considered as a basic drawback of all IR-sensor systems (at least in this
price-class).

However the robot can detect and avoid most obstacles flawlessly. If ACS-detection
fails, there are still the bumpers with touch sensor elements. And if the touch sensors
fails the robot may detect motor blocking by its current sensors or encoders!

If you are not satisfied with these sensor systems, you might consider mounting some
ultrasonic sensors for example.

- 18 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

2.3.4. Bumpers

There is a small PCB with two micro switches with long levers mounted in front of the
Robot. It protects the IR LEDs on the sensor-PCB from being damaged if the robot ac-
cidently hits an obstacle. With these switches the Microcontroller can detect collisions
and reverse the robot’s direction, turn around and then go on with moving forwards.

The switches are connected to ports already used by LEDs. Thus they do not occupy
free ports of the Microcontroller. These dual usage causes the LEDs to light up as soon
as one of the switches is pressed down! However, the switches will only be hit occa-
sionally and activated LEDs will not disturb anything then.

The bumper PCB may also be removed and for example replaced by a kick/collecting
device for balls or something else.

2.3.5. Motor Current Sensors

Each of the two motor current sensor circuits contains a

power resistor. Ohm’s Law U=R⋅I tells us that the voltage
drop at a resistor is proportional to the current flow
through it!

In order to prevent excessive voltage drops at these resist-
ors, they need to have a very small resistance value. Here
we used 0.1 Ohm.

With such a tiny value, the voltage drop is very small (0.1V at a 1A current) and has
to be amplified before the A/D-conversion can take place. This is performed by a so-
called operational amplifier (opamp). The RP6 uses an opamp for each individual cur-
rent sensor. The measureable current range is about 1.8A. This current results in a
voltage drop of 0.18V at the power resistor and an opamp output voltage of approx-
imately 4V. This is the maximum output voltage for the opamp with 5V power supply.

The used power resistors are 10% tolerance types, the resistors at the opamp are 5%
ones. All components are non-precision components and you may observe measure-
ment deviations of up to 270mA if you do not calibrate this! However we only need a
roughly estimated current level to detect critical motor load conditions. The robot will
reliably detect blocked/heavily loaded motors and even defective motors or odometer
wheel sensors! DC-Motors draw more current the higher the load is (Torque). With
blocked Motors, the current gets very high for our motors. This is detected by the
Software and an emergency shutdown is initiated. If this would not be done, the Mo-
tors would get very hot and and this (and the high torque) damages them over time.

If an encoder fails – whatever may have caused this - the system can reliably detect
this condition, too. Of course, the measured velocity would be zero. But if the motor
drivers run at full power and the current sensors detect only low currents (which im-
plies that the motors are not blocked!) you may conclude either motor or encoder fail-
ure or both. For example such a condition can arise if you forget to activate the
sensors in software ...

- 19 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

2.3.6. Encoders

The encoders work completely different compared to the
previously discussed sensors. They consist of reflective in-
terrupters and code wheels which are attached to one of
the gearwheels in each gearing system. This setup is used
to determine the rotational velocity of the Motors. Both en-
coder wheels have 36 segments (18 black and 18 white
fields, see figure). While the gears rotate, these segments
move along in front of the reflective interrupter. The white
segments reflect the IR-Light, whereas the black ones will
only refelct a minor amount of light. Just like the other
sensors the encoders produce an analog signal, but it will
be interpreted digitally. First of all the signal has to be

amplified and subsequently converted to a square wave signal by a so-called Schmitt
Trigger. Both rising and falling edges of the signal (changes of 5V to 0V and 0V to 5V)
trigger an interrupt event and these event are counted by software. This way the driv-
en distance can be measured and together with a timer the rotational velocity can be
calculated.

Determination of the speed is the main application of the encoders. Encoder feedback
is the only reliable way to control the motor speed. In an uncontrolled system, the
motor speed would be depending on battery voltage, load and motor parameters. The
high resolution encoders even allow us to reliably control rather slow speeds.

Each of both cluster gears in the middle of the gear-
ing system provide 50 teeth at the outer and 12
teeth at the smaller inner gearwheel (see figure).
The code wheels are located at the gearwheel next
to the motor pinion gear, thus we can calculate:

This is where the 36 Segments come from, because
this results in an integer number without fractional
part for a complete wheel revolution. The encoders
generate 625 egdes per revolution and whereas each represents one segment.

A wheel diameter of around 50mm including the rubber track theoretically results in a
wheel circumference of approximately 157mm and thus 0.2512mm for each counting
unit of the encoders. However the tracks may get deformed under pressure or they
may get pushed into flexible surfaces. Therefore we can directly assume a maximum
of 0.25mm for each counting unit. Often we will have to apply even less: 0.24 or
0.23mm. Calibration values may be determined by driving well defined test distances
as described in the Appendix. This is not accurate because of slippery and similar ef-
fects. Moving straight forward will cause minor encoder accuracy errors, but rotating
the robot will result in increased deviations. Especially rotating the robot on the point
will cause deviations.

Deviations can only be determined and corrected by testing, trial and error. This is a
drawback for all caterpillar drive systems – in our robot and in more expensive as
well. Compared to robots with a standard differential drive unit with two wheels and
an additional support wheel the caterpillar systems allows a far better behaviour in all-
terrain surroundings. The caterpillar drive system will easily overcome small

- 20 -

50
12

⋅50
12

=1713
36

; 1713
36

⋅36=625

RP6 ROBOT SYSTEM - 2. The RP6 in detail

obstacles, ramps and uneven floors. On such surfaces, the encoders are extremely
helpful, as they allow optimal speed regulation under all load conditions, completely
independent of surface condition, motor load and Battery voltage.

At a rate of 50 segments per second we have a speed of 1.25 cm/s assuming a value
of 0.25mm per segment. This speed is the minimal speed, which can be controlled
reliably (at least with the standard software implementation). The exact value may
vary for individual robots. A rate of 1200 segments/second corresponds to the maxim-
um possible 30 cm/s (at 0.25mm resolution, whereas 0.23 corresponds to 27.6 cm/s).
Maximum speed depends on battery charging status and 30cm/s will are not possible
for too long with usual Batteries. Because of this, the function library forces a limit of
1000 segments/second to be able to maintain a constant maximum speed for longer
battery discharge periods. Additionally, the life time of gears and motors will be pro-
longed when using lower speeds most of the time!

Whenever the robot has counted 4000 segments, it will have covered a distance of
approximately one meter. As already explained, this specification is valid for exactly
0.25mm resolution - without proper calibration you will notice more or less severe
deviations. If you do not care for precise distance calculations, you just do not need to
calibrate the encoders and simply assume a value of 0.25mm or better 0.24mm!

Good navigation systems usually do not rely completely on encoders for distance and
angle controls, but use external fixed markers such as infrared beacons and a preci-
sion electronic compass. So it is usually a good idea to use external systems to correct
odometry deviations as often as possible.

2.4. Drive System
The RP6 drive system consists of two DC motors with attached gearing systems for
powering the caterpillar wheels (see preceding figure). The motors can consume a
fairly high amount of power and a microcontroller can not directly serve such high cur-
rents.

Thus we need powerful motor drivers. We
use two so called H-Bridges for the RP6 Mo-
tors. The diagram on the left shows the ba-
sic principle. There you can also see why it
is called like this: The Switches and the Mo-
tor form the letter “H” together.

Now let us assume all switches are open. If
we close switches S1 and S4 (red) a voltage
will be applied to the motor and it will start
turning, say to the right. If we now open S1
and S4 again and subsequently close S2 and
S3 (green), we reverse the applied voltage
and the motor will start turning in the op-
posite direction (to the left). Of course we
will have to take care not to close S1 and S2
or S3 and S4 simultaneously. Each of these combinations would result in a short cir-
cuit and might destroy the activated switches.

- 21 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

Of course the RP6-design will not be using mechanical switches but so-called
MOSFETs, which are conductive if a suitable voltage is applied to the gate connection.
MOSFETs can switch very fast at a rate of several Kilohertz is possible.

Now we have found a way to reverse the motor’s rotational direction. And how are we
going to accelerate or slow down the motor? A DC-Motor will rotate faster the higher
the voltage gets and we may control the motor speed by increasing or decreasing the
voltage. Let’s have a closer look at the H-bridge again.

The figure shows what we can do. We
generate a square wave at a fixed fre-
quency and apply pulse width modulation,
which changes the duty cycle. “Duty cycle”
means the ratio between high and low sig-
nal periods.

The motor will now get a lower median
DC-voltage, corresponding to the duty
cycle.

The graph shows this behaviour with a red
line (Ug) and the red areas under the lines.
For example if a battery voltage of 7 Volts
is applied to the motor controller circuit
and the motor is being controlled at a

PWM duty cycle of 50% the equivalent median DC-voltage would be roughly 3.5 Volts!
This is not completely corresponding to the real circuit conditions, but it is good to
visualize it like this.

The RP6 uses a rather high gear reduction ratio (~ 1:72) which results in a quite
strong driving system, enabling the robot to carry heavier loads, for example com-
pared to the small ASURO robot. However with increasing weight, we must consider a
higher power supply load, resulting in an increased discharge rate…

Compared to remote controlled racing cars you might think the RP6 is a slow
vehicle - which is true - but we designed the robot to be slow! The robot is build to be
controlled by a microcontroller and if the programmer makes a mistake in the soft-
ware it would be rather unfavourable if the robot crashes into a wall at a speed of
10mph! So by using a moderate speed, the RP6 will not run into trouble that easy and
at a slower movement the sensors will have ample of time to react on obstacles. Addi-
tionally the robot is more powerful and the speed control is more accurate! Slower
speed enables the RP6 robot to drive very very slowly at a constant speed!

2.5. Expansion System
One of the most useful features of the RP6 is the expansion
system, allowing you to easily add additional things to the
Robot. The basic RP6 platform includes rather few sensors.
Still this number of sensors is well above the average of
comparable robots in this price-class, but the robot will only
become really attractive with several additional sensor mod-
ules. The ACS for example will only detect the existence of
obstacles in front of the robot. Using ultrasonic sensors or
improved additional IR-sensors you might be able to determ-

- 22 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

ine the distance and start sophisticated manoeuvres to avoid the obstacles!

Apart from sensor circuits, additional controllers could be useful to perform additional
tasks, e.g. the RP6 CONTROL M32 providing an extra MEGA32 microcontroller.

Of course the expansion system has to be capable of connecting several expansion
modules (see figure), while using a minimum number of signal lines and providing
sufficient communication speed.

2.5.1. The I²C Bus

The I²C Bus will satisfy these requirements. The name stands for Inter Integrated
Circuit Bus and is pronounced I-squared-C. Sometimes we may write “I2C” instead of
“I²C”, because in plain C language the “²” symbol is not allowed for variable names
and other things. The bus requires only two signal lines and may connect 127 parti-
cipants communicating at a rate of 400kBit/s.

The extremely popular I²C Bus, designed by Philips Semiconductors during the
eighties and nineties, is used in a great number of electronic equipment, e.g. video re-
corders, televisions, but also in industrial systems. Most of the modern PCs and note-
books use a variant of this bus called SMBus to control air flow and temperature of the
internal devices. A great number of robots also uses the I²C Bus system and for this
reason a number of sensor modules like ultrasonic sensors, electronic compasses,
temperature sensors and similar devices are available on the market.

The I²C Bus is a master/slave-oriented bus. One or more master devices are con-
trolling communication with up to 127 slave devices. But even though the bus is able
to handle multi-master communication, we will only describe a bus communication
with a single master device. Multi-master topology would only complicate things.

The two required signal lines are named SDA and SCL. SDA is to be read "Serial Data"
and SCL is named "Serial Clock" – which already explains we are using a data- and a
clock signal line. SDA is used as a bidirectional signal and therefore both master and
slave devices are allowed to output data. SCL is completely controlled by the master
device.

Data bits are always transferred synchronous to the clock signal as delivered by the
master. The SDA level is only allowed to change as long as SCL is low (except for
Start- and Stop-conditions, see below). Transfer rates are allowed to change between
0 and 400kBit/s even while data is being transmitted.

The preceding figures show usual transmission protocols. The first one shows a trans-
mission from a master to a slave device, in which white boxes refer to data transmis-
sions from master to slave and the dark boxes represent the responses from the slave
device.

Each transmission has to start with an initial start condition and must be ended by a
stop condition. The start condition is raised whenever at a high SCL-level the data line
SDA is pulled from high to low level. A reversed level pattern applies to the stop-con-
dition: whenever at a high SCL-level the data line SDA is pulled from low to high level
we meet a stop-condition.

- 23 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

Immediately after the start-condition we have to send the 7 Bit long slave-address for
the device to be addressed, followed by a bit defining whether we want to write or
read data. The slave will respond by sending an ACK ("Acknowledge"). Any number of
data bytes may follow and each individual received byte will have to be acknowledged
by the slave (using the ACK-signal). Communication will be terminated with a
stop-condition.

This description is only a very short explanation of the I²C Bus. Interested readers
may find more information in the I²C Bus specification sheets by Philips. And also the
specs for the MEGA32 do contain more information to this topic.

The example programs demonstrate how to use the bus hardware. The RP6 library
already provides functions for controlling the I²C Bus. You will not have to go into de-
tails of the protocol, but it is useful to understand how bus the communication is ba-
sically working.

2.5.2. Expansion Connectors

The mainboard provides four expansion connectors.
Two of these devices are labelled “XBUS1” and
“XBUS2” respectively. “XBUS” is a shortcut for “eXpan-
sion BUS”. “XBUS1” and “XBUS2” are interconnected
completely and have been arranged symmetrically on
the main board. For this reason you will be allowed to
mount expansion modules both at front and rear of the

robot. Each expansion module provides two XBUS connectors at one side of the mod-
ule. A 14-pin flat cable is used for interconnecting the modules to each other and to
the mainboard. For interconnections each expansion module provides two identical in-
terconnected plugs. The outer plug has to be used for downward interconnections,
whereas the inner plug has to be used for upward interconnections. This way you are
(theoretically) allowed to stack any number of modules (see figure, showing three
RP6 breadboard expansion modules, which may be used for your individual circuits).

The XBUS plugs provide power supply, the previously described I²C-Bus, a master
rest and interrupt signals.

The power supply provides two voltages at the connectors: first of all the stabilized 5V
from the voltage regulator, but the battery voltage as well. The battery voltage will
vary with time and load – usually between 5.5 (discharged batteries) up to approxim-
ately 8.5V (newly charged batteries – varying from manufacturer to manufacturer).
Voltages may however exceed these limits depending on load, type and charging
status of batteries.

The master reset signal is important for resetting all microcontroller devices when
pressing the Start/Stop-button or for programming. The boot loader programs in the
microcontrollers will start their user program at a low pulse (high-low-high) on SDA.
This way all programs on the (AVR) controllers will simultaneously start after pressing
and releasing the Start/Stop-button or by starting the program by boot loader soft-
ware... (the boot loader does not only generate a low impulse to start, but also a
complete I²C General Call with 0 as data byte.)

- 24 -

RP6 ROBOT SYSTEM - 2. The RP6 in detail

A few modules can use the interrupt lines for signalling the master microcontroller
either the arrival of new data, or whether a job has been completed and new com-
mands are being expected. Not providing these lines would force the master device to
repeatingly query some specific expansion modules for new data. Of course this meth-
od would be possible, but the alternative design with additional interrupt lines will
usually reduce bus traffic and CPU load. As the number of interrupt lines is restricted
to 3 signals and one free line reserved for user signals, you may have to assign one
line to several modules (e.g. all ultrasound sensors) and poll all
modules subsequently when an interrupt is signalled.

The other two expansion connectors labelled “USRBUS1” and “US-
RBUS2” on the mainboard are not interconnected. All lines are
routed to soldering pads on all expansion modules and you may
apply your own signals to these pads.

“USRBUS” is an abbreviation of “User-Bus”. You may use this 14-
pin expansion connector for anything you want - your own bus
system, additional power supply lines (but be careful, the traces
are rather thin and for low currents of max. 500mA only) or any-
thing else. Example given: you are able to interconnect two ex-
pansion modules without providing connections to other modules.
This might be useful for more complex circuits or sensors, which
cannot be placed on a single expansion module. This method will
tidy up your wiring.

Of course you can not add any number of expansion modules – 6
stacked modules at the front- or backside will definitely overload your vehicle. Too
many modules will also cause problems by overloading the battery supply. As a gen-
eral rule you may mount a maximal number of 8 modules to the RP6: 4 at the front
side and 4 at the backside.

The figure shows the connection diagram for both expan-
sion connectors. On the mainboard, pin 1 is always located
near the white label XBUS1 and XBUS2, respectively. Al-
ternatively, the pin is labelled with “1” at the connector-
position.

+UB is the battery-voltage, VDD is the +5V rail, GND la-
bels “Minus” or “Ground” (GND = Ground), MRESET labels
the Master Reset Signal, INTx are the Interrupt-lines, SCL
is the clock- and SDA the data-line of the I²C Bus.

Anything else you need has to be soldered to the USRBUS
connector pins.

Important notice: Do not overload the supply lines VDD and +UB! These
lines can provide a maximum current of 1A each (this applies to both Pins
TOGETHER! This means joined Pins 4+6 (+UB) and 3+5 (VDD) of the con-
nectors)!

- 25 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3. Hardware and Software Setup
Before you start with setting up the RP6 or accessories, you have to
read the following safety instructions carefully. Especially if children
are handling the RP6 later on!

Please read this chapter extra carefully!

3.1. Safety Instructions
Due to the open frame architecture of the RP6, there are several sharp edges. Thus
the Robot may not be used as a toy for children aged less than 8 years! Please super-
vise children that are in the room while operating the RP6 and inform your children
about the described dangers!

Do not operate the robot in locations with freely moving animals, for example ham-
sters, as they may get hurt. The other way round, bigger animals like dogs and cats
might damage the robot...

The caterpillar drive system has some dangerous sectors between tracks and
wheels, where the caterpillar may draw in you fingers. These sectors are
largely covered by the wheel wells of the RP6 and therefore mostly secure. Still, take
care not to get your fingers between wheels and tracks! The motors are quite power-
ful and may easily hurt you! Also keep your fingers out of the area between PCB and
tracks!

ATTENTION: Even if you are using the standard software, the motors may automat-
ically increase their power level! Depending on the programming style, motors may
start operation at any time and unforeseen reactions and movements may occur!
Never operate the robot without supervision!

3.1.1. Electrostatic Discharges and Shorts

The surface of the main PCB, the USB Interface and all expansion modules is un-
covered and reveals a great number of unprotected components and PCB traces.
Please do not cause short circuits by deposition of metallic parts or tools on the sur-
face of the Robot!

Supply voltages are at very low levels only and safe for human beings. A great num-
ber of components however may get damaged by electrostatic discharges
(ESD) and you should not touch these components unless necessary!
Especially in combination with synthetic clothing, dry air may cause electrostatic char-
ging of the human body. And the robot as well may be charged, mainly depending on
the floor-covering. In touching metallic parts charged bodies will be discharged by tiny
sparks. These discharges may damage or destroy electronic components while manip-
ulating these parts. To prevent damages by ESD please touch a large grounded device
(e.g. your PC's metal housing, a drainpipe or a heating pipe) before touching the elec-
tronic components. Touching a grounded device will discharge your body. Uncontrolled
discharges of the robot touching grounded obstacles will not damage the robot, but it
may cause program crashes or unforeseen reactions.

- 26 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

All electric lines from and to the system must be connected before connecting and ap-
plying the supply voltage.
Unexpected connecting or disconnecting plugs, cables or modules in an operating ro-
bot may damage or destroy parts of the system and additional components.

3.1.2. Environment of the Robot

Do not operate the robot on table tops or in areas with high precipies, where it may
fall down to the ground. Please consider the climbing capability of caterpillar vehicles!
The robot may easily drive over small obstacles and push light parts ayway! Please re-
move all objects containing liquids from the robot’s operating area, e.g. cups, bottles
and vases.

The robot’s chassis will protect the mechanical parts against a number of environ-
mental influences, but it is neither water- nor dustproof. The electronics are rather
unprotected as well. You should operate the robot in clean and dry in-house areas
only. Dirt, loose particles and humidity may damage or destroy mechanical and elec-
tronic components. Operating temperatures are to be restricted between 0°C and
40°C.

Especially inside operating DC-Motors, tiny sparks are generated. Do not operate
the robot at all in an environment with combustibles or explosives (liquids, gases or
dusts)!

If not operated for long periods of time, the robot should not be stored in locations
with high humidity! Please also remove the batteries to prevent damage by leaking
batteries!

3.1.3. Supply Voltage

The robot has been designed for a 7.2V supply voltage, provided by 6 rechargeable
NiMH batteries. Maximal supply voltage is 10V and shall not be exceeded at any time.
Only use charging devices with valid and legal safety certifications for charging batter-
ies!

As a remedy you may also operate the robot with 6 heavy duty alkaline batteries.
Normal batteries however will discharge rapidly and cause high costs and environ-
mental damages, so please use rechargeable batteries if possible! Rechargeable bat-
teries will also provide higher maximum currents and may easily be charged inside the
robot!
Please pay attention to the safety and disposal remarks for batteries in the
appendix!

Modifications of the robot should only be done by users, who are completely
aware of what they are doing. You may irreversibly damage the robot or
harm yourself and others by modifications (e.g. overheating components may
cause fire in your house...)!

- 27 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=combustible
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=tub

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.2. Software Setup
Software setup comes next. Correctly installed software is required
for all following chapters.

You will need administrator rights to install, so please login as an ad-
ministrator to your system.

We suggest that you first read the whole chapter and then sub-
sequently follow the instructions step by step!

We need to assume, that you have basic knowledge in working with com-
puters using the operating systems Windows or Linux and standard software
packages such as a file manager, web browser, unpacker (WinZip, WinRAR, unzip,
etc.) and if relevant e.g. the Linux-Shell! If you are not familiar with using computers,
you should prepare yourself to acquire basic knowledge in this field before starting to
operate the RP6! We cannot provide an introduction course in computer usage in this
manual, as this topic is out of scope! This manual will describe the RP6, programming
the RP6 and the dedicated system software.

3.2.1. The RP6 CD-ROM

You probably inserted the RP6 CD-ROM already into the CD-ROM-drive of your PC – if
not, please insert the CD now! In Windows you should observe an auto start action
and the CD menu should show up in a browser windows. If not, you can open the file
"start.htm" in the CD’s main directory in a web browser, e.g. Firefox. If your PC does
not provide a modern browser you may find a Firefox installation package in the CD-
directory:

<CD-ROM-Drive>:\Software\Firefox
You should use at least Firefox 1.x or Internet Explorer 6.

Having selected your language, the CD menu will offer you a lots of useful information
and software. Apart from this manual (which may be downloaded from our homepage
as well) you may have a look e.g. at data sheets of the Robot's components. The
menu entry labelled “software” provides access to all software tools, the USB-driver,
and example programs with source code for the RP6.

Depending on security settings in your web-browser you may start installation pack-
ages directly from the CD! If your browser’s settings do not allow installation, please
proceed by saving the files to a directory of your disk and start installation from there.
You will find details to these procedures on the software page of the CD menu. Altern-
atively you might also browse to the CD root directory in your file manager and start
installation directly from the CD. Directory names have been chosen to correspond to
their respective software packages and operating system.

- 28 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.2.2. WinAVR - for Windows

First of all we will install WinAVR. WinAVR however is – as already indicated by its
name – available for Win dows only !

Linux users may skip this section.

WinAVR (pronounced “whenever”) is a package of useful and required tools for soft-
ware development with AVR microcontrollers in the C-language. Apart from GCC for
AVR target (which is called "AVR-GCC", more infos on this follow later on), WinAVR
also provides a comfortable source code editor called "Programmers Notepad 2",
which will also be used for software development for RP6. WinAVR is a privately or-
ganized project and the package is freely available on Internet for everyone. New re-
leases and further information may be found on the official project website:

http://winavr.sourceforge.net/
Just recently, ATMEL started to officially support the project and AVRGCC may now be
integrated into their integrated development environment AVRStudio. Programmers
Notepad 2 is better suited for our project and we will not describe AVRStudio here.
Nevertheless, you may also use AVRStudio for development with RP6 if you like.

The WinAVR installer can be found on the CD:

<CD-ROM-Drive>:\Software\AVR-GCC\Windows\WinAVR\
Installing WinAVR is very simple and self-explanatory – usually you do not need to
change any settings - just click on continue all the time!

If you run into trouble with the most recent version of WinAVR, there are some older
Versions available on the CD, too. There is also a Patch for Win x64 if you encounter
problems with the standard version there.

3.2.3. AVR-GCC, avr-libc and avr-binutils - for Linux

Windows users may skip this section!

Installing avr-gcc in Linux environments may become a little bit more complicated. A
few distributions already provide the required packages, but often the packages con-
tain obsolete releases without some of the required patches.

Most likely you will have to compile and install new versions.

We cannot refer to details for each of the countless Linux distributions, such as SuSE,
Ubuntu, RedHat/Fedora, Debian, Gentoo, Slackware, Mandriva etc. varying in versions
and all their quirks. We will provide a general installation approach only.

This also applies to all following Linux topics in this chapter!

For your specific system setup, the following approach may not automatically be suc-
cessful. Often you will find help by searching "<LinuxDistribution> avr gcc" and by
varying the phrases in this search string. This is also a good idea for all other possible
problems, which may occur on linux systems! If you are having trouble with avr-gcc
installation, you might try to find a solution by visiting our forum or any of the numer-
ous Linux forums out there.

- 29 -

http://winavr.sourceforge.net/

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

First of all you will have to deinstall any preceding – and as already stated probably
obsolete - versions of the avr-gcc, avr-binutils and avr-libc. To start deinstall you may
use your distributions package manager tool, search for “avr” and then deinstall the
packages from your system, if the tool finds corresponding objects starting with
“avr-”.

You may easily check whether avr-gcc has been installed or not. If it exists you may
ask for the location of the program by executing the following on a command-line:

> which avr-gcc
If the system responds with a pathname, then most likely an avr-gcc version already
exists on your system. In this case you can check its version:

> avr-gcc --version
If the version number is under 3.4.6, you definitely have to deinstall it. If the version
number is between 3.4.6 and 4.1.0 you may test it by compiling programs (see next
chapter). If compiling fails you can proceed by deinstalling old versions and installing
the avr-gcc version from the CD. The following chapter will refer to a recent version
4.1.1 (released March 2007) including some important patches that are usually also
included in WinAVR.

Attention: please check the availability of the standard Linux development packages,
e.g. GCC, make, binutils, libc, etc. before you start compiling and installing! Use your
distributions package manager. Each Linux distribution should provide the required
packages on the installation CD or alternatively you should be able to obtain the latest
packages via Internet.

Please make sure you have the program “texinfo” installed. If the program is missing,
you have to install it before proceeding with the installation – otherwise the installa-
tion process will fail!

Having completed this, you may now start the actual installation.

You have two options to chose from: either you compile and install all packages
manually or you may use a simple automatic install script.

We suggest to try the script first and use manual install only if problems occur!

Attention: Please check whether you have enough free disk space! You will need more
than 400MB of free space. More than 300MB of this data is only required temporairly
for compiling, but may be removed later.

A number of install jobs require root rights and we suggest you should be logged in as
root by “su” OR alternatively start critical jobs with “sudo” (as usual for the Ubuntu-
distribution) or corresponding commands. The install script, mkdir in /usr/local/ dir-
ectories and make install require root-rights.

Please pay attention to the CORRECT spelling of the following commands! Each and
every symbol is meaningful and even if some of these commands may look
awkward – these lines are perfectly correct and do not contain typing errors! (Of
course you will still have to replace the string <CD-ROM-drive> by the name of your
CD-ROM-drive device!).

- 30 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

All relevant installation files for avr-gcc, avr-libc and binutils can be found in the fol-
lowing directory:

<CD-ROM-Drive>:\Software\avr-gcc\Linux
Start by copying all install files to a directory on your hard disk – this is valid for both
installation methods! In this case we will be using the Home directory (a standard
shortcut for the Home directory is the swung dash or tilde-character: “~”).

> mkdir ~/RP6
> cd <CD-ROM-Laufwerk>/Software/avr-gcc/Linux
> cp * ~/RP6
These files may be removed after successful installation to save disk space!

3.2.3.1. Automatic install script

After having set the script to executable by using chmod, you may proceed as follows:

> cd ~/RP6
> chmod -x avrgcc_build_and_install.sh
> ./avrgcc_build_and_install.sh
You may respond with “y” to the question, whether you are willing to install this con-
figuration or not.

ATTENTION: The compile and install process will take some time depending on your
system’s performance (e.g. approximately 15 minutes on a 2GHz CoreDuo
Notebook – slower systems may need some more time).

The script will also apply a few patches – these are labelled .diff-files in the directory.

Having completed the process you should see the following message:
(./avrgcc_build_and_install.sh)
(./avrgcc_build_and_install.sh) installation of avr GNU tools complete
(./avrgcc_build_and_install.sh) add /usr/local/avr/bin to your path to use the avr GNU tools
(./avrgcc_build_and_install.sh) you might want to run the following to save disk space:
(./avrgcc_build_and_install.sh)
(./avrgcc_build_and_install.sh) rm -rf /usr/local/avr/source /usr/local/avr/build

Then you may proceed as suggested by executing:

rm -rf /usr/local/avr/source /usr/local/avr/build
This command will delete all temporary files, which are not needed anymore.

You may now proceed to the next step and set the path environment variable to the
avr-tools.

If the script ends up with some error message, you will have to read the error-mes-
sages carefully (and scroll up in the console!) – sometimes programs are missing,
which will have to be installed in a preceding step (e.g. the previously mentioned pro-
gram texinfo).

Before proceeding after an error message, we advise you to delete the previously
generated files in the standard installation directory “/usr/local/avr”. We even advise
you to delete the complete directory.

If you are unsure what went wrong, please save all command line outputs into a file
and send the relevant error description and the text file to the support team. Please
send all the available information! This will make it easier to help you.

- 31 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=dash
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=swung

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.2.3.2. Manual install procedure

If you prefer manual install or the automated install script fails, you may proceed with
the following steps.

The description has been derived from the following article:

http://www.nongnu.org/avr-libc/user-manual/install_tools.html
It can also be found as a PDF document in the AVR Libc Documentation on the CD:

<CD-ROM-Drive>:\Software\Documentation\avr-libc-user-manual-1.4.5.pdf
Please start on PDF page 240 (respectively 232 according to the page numbering sys-
tem in the document).

This description is only a summary of this document, but we also install a few import-
ant patches – if you do not install these patches a few things will not work properly
(like the very useful binary constants).

First of all we will have to create a directory, in which we are going to install all tools.
The directory should be named: /usr/local/avr.

In the terminal enter the following commands as ROOT:

> mkdir /usr/local/avr
> mkdir /usr/local/avr/bin
It does not need to be this directory. We simply define a variable called $PREFIX for
this directory:

> PREFIX=/usr/local/avr
> export PREFIX
Now we definitely have to add the definition to the PATH variable:

> PATH=$PATH:$PREFIX/bin
> export PATH
Binutils for AVR

We proceed by unpacking the source code for Binutils and applying a few patches. Let
us assume you have copied all files to the home directory ~/RP6:

> cd ~/RP6
> bunzip2 -c binutils-2.17.tar.bz2 | tar xf -
> cd binutils-2.17
> patch -p0 < ../binutils-patch-aa.diff
> patch -p0 < ../binutils-patch-atmega256x.diff
> patch -p0 < ../binutils-patch-coff-avr.diff
> patch -p0 < ../binutils-patch-newdevices.diff
> patch -p0 < ../binutils-patch-avr-size.diff
> mkdir obj-avr
> cd obj-avr
Now execute the configure script:

> ../configure --prefix=$PREFIX --target=avr --disable-nls
This script analyzes what is available on your system and generates the required
makefiles. At the end of this script you can compile and install everything:

> make
> make install

- 32 -

http://www.nongnu.org/avr-libc/user-manual/install_tools.html

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

Depending on your PC's performance this will take a few minutes – this is also true for
the next two steps – especially for the GCC!

GCC for AVR

Using similar procedure as for Binutils, the GCC has to be patched, compiled and in-
stalled:

> cd ~/RP6
> bunzip2 -c gcc-4.1.1.tar.bz2 | tar xf -
> cd gcc-4.1.1
> patch -p0 < ../gcc-patch-0b-constants.diff
> patch -p0 < ../gcc-patch-attribute_alias.diff
> patch -p0 < ../gcc-patch-bug25672.diff
> patch -p0 < ../gcc-patch-dwarf.diff
> patch -p0 < ../gcc-patch-libiberty-Makefile.in.diff
> patch -p0 < ../gcc-patch-newdevices.diff
> patch -p0 < ../gcc-patch-zz-atmega256x.diff
> mkdir obj-avr
> cd obj-avr
> ../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \
 --disable-nls --disable-libssp –with-dwarf2
> make
> make install
By using a “\” you may press Enter and continue typing on the commandline – this al-
lows you to split a line up and write an extremely long command line in several lines
for better overview. Of course you may also omit this character and write the com-
mand as a single very long line.

AVR Libc

Finally the AVR libc:

> cd ~/RP6
> bunzip2 -c avr-libc-1.4.5.tar.bz2 | tar xf -
> cd avr-libc-1.4.5
> ./configure --prefix=$PREFIX --build=`./config.guess` --host=avr
> make
> make install
Attention: At –build=`./config.guess` you must pay attention to the “Accent grave”
(à <-- the tiny stroke on top of the letter a! Do not use a normal apostrophe, as this
will not work.

3.2.3.3. Setting the path

Now you have to make sure that the directory /usr/local/avr/bin is in your Path vari-
able! Otherwise you will not be able to start the avr-gcc from the terminal and from
makefiles. You have to add the avr-gcc path to the file /etc/profile or /etc/envir-
onment or similar files (this varies from distribution to distribution). You have to add
the new path to the excisting string, separated by a “:” character. The line in the file
may more or less look like this:

PATH="/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/usr/local/avr/bin"

Now you can check if the installation works by entering “avr-gcc -–version” in a
terminal as discussed in previous sections. If this gives proper response, in-
stallation was successful!

- 33 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.2.4. Java 6

The RP6Loader (see below for more information about it) has been designed for the
Java environment and may be used in Windows and Linux (in theory, other operating
systems such as OS X should work as well, but unfortunately AREXX Engineering does
not support this so far). In order to run RP6Loader, you have to install a recent Java
Runtime Environment (JRE). Maybe you already have it installed on your computer,
but it should be at least Version 1.6 (= Java 6)! If you have not installed a recent JRE
or JDK yet, please install SUN Microsystems' JRE 1.6 from the supplied CD or alternat-
ively obtain a more recent version from the websites http://www.java.com or
http://java.sun.com.

3.2.4.1. Windows

In a Windows environment, the JRE 1.6 is located in the directory:

<CD-ROM-Drive>:\Software\Java\JRE6\Windows\
Under Windows the Java installation is quite simple – just start the Setup and follow
the instructions – done! You can skip the next section.

3.2.4.2. Linux

Most of the time installing Java in Linux environments is as easy as with Windows, but
some distributions may require some manual work.

You can find the JRE6 as RPM (SuSE, RedHat etc.) and as a self-extracting archive
“.bin” in this directory:

<CD-ROM-Drive>:\Software\Java\JRE6\
We advice you to search Java packages with the help of the specific distribution's
package manager (search for “java”, “sun”, “jre” or “java6” ...) and to use these
packages instead of the supplied ones on the CD! Please make sure that you install at
least Java 6 (= JRE 1.6) or a newer version!

For Ubuntu or Debian the RPM Archiv will not be working anyway – here you have to
use the package manager of your distribution. Other distributors like RedHat/Fedora,
SuSE and others can use RPM if you can not use their package manager.

If the installation is not successful, you may still try to extract the JRE from the self
extracting archive (.bin) in a directory on your hard disk (e.g. /usr/lib/Java6) and then
set the JRE paths manually (PATH and JAVA_HOME etc.).

Please follow Sun’s installation instructions, which can be found in the previously men-
tioned directory and on the Java Website!

To verify that everything works properly, please execute the command “java -ver-
sion”. The response should look like this:

java version "1.6.0"
Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)
If the response is different, your may have installed be obsolete or you may be run-
ning another Java VM at your system in parallel.

- 34 -

http://java.sun.com/
http://www.java.com/

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.2.5. RP6Loader

We created the RP6Loader to simplify the uploading process for new programs to the
RP6 and all expansion modules (as long as these modules provide a microcontroller
with a compatible bootloader). Additionally we implemented a few useful functions,
e.g. a simple serial terminal program.

You do not have to install the RP6Loader – instead you may simply copy the program
somewhere to a new directory on your hard disk. The RP6Loader is located in a ZIP-
archive on the RP6 CD-ROM:

<CD-ROM-Drive>:\Software\RP6Loader\RP6Loader.zip
Please unzip the file somewhere on your disk – e.g. in a new directory
C:\RP6\RP6Loader (or similar). This directory contains the executable program
RP6Loader.exe.

In fact, the real RP6Loader is located in the Java Archive (JAR) RP6Loader_lib.jar. Al-
ternatively you would be able to start this RP6Loader from a command line window.

Windows:

java -Djava.library.path=".\lib" -jar RP6Loader_lib.jar

Linux:

java -Djava.library.path="./lib" -jar RP6Loader_lib.jar
The long –D option is required to enable the JVM to locate all necessary libraries. Usu-
ally you will not need this option and you just start the .exe-file to run the program.
Linux uses a Shell Script “RP6Loader.sh”, which needs to be set executable by issuing
chmod -x ./RP6Loader.sh. This will allow you to start “./RP6Loader.sh” from a terminal
or in Desktop Environments.

We recommend to create a link to RP6Loader on the desktop or the start menu. To do
so, right click on RP6Loader.exe in Windows and select “Send to” --> “Desktop (Cre-
ate a link)”.

3.2.6. RP6 Library, RP6 CONTROL Library and Example programs

RP6Library and the corresponding example programs are located in a ZIP-archive on
the supplied CD:

<CD-ROM-Drive>:\Software\RP6Examples\RP6Examples.zip
Extract this archive to a directory of your choice on your harddisk. We suggest to use
a directory on a data partition. Alternatively you might use the “My Documents”-dir-
ectory and create a subdirectory “RP6\Examples\” or use the Home directory in Linux.

We will discuss the example programs in detail later on in this manual!

The archive also provides examples for the RP6 CONTROL M32 expansion module in-
cluding the corresponding library files!

- 35 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.3. Connecting the USB Interface – Windows
Linux users can skip this section!

There are several ways to install the USB Interface Drivers. The simplest way is in-
stalling the drivers BEFORE connecting the device for the first time. The CD provides
different install programs for the driver.

For 32 and 64 Bit Windows XP, Vista, Server 2003 and 2000:

<CD-ROM-Laufwerk>:\Software\USB_DRIVER\Win2k_XP_Vista\CDM_Setup.exe

Unfortunately there is no such comfortable setup program in Win98SE/Me – in this
case you will have to install an older driver version manually after connecting the
device to the PC (see below).

Just execute the CDM Installer program – the program will only show a short info dia-
log confirming the successful installation of the driver. That’s all.

After the installation you may connect the USB Interface to your PC, BUT PLEASE DO
NOT CONNECT IT TO THE ROBOT, YET! Just connect it to the PC with the USB cable!
Please try to touch the PCB only at the sides or at the USB-plug, respectively at the
plastic cover of the programming plug (see the safety instructions about static dis-
charges)! Please avoid unnecessary touching of any of the components on the PCB,
soldering pads or contacting elements of the covered plug to avoid static discharges!
This is a general handling rule for all electronics equipment without covering.

The previously installed driver will be automatically assigned to the device and no fur-
ther action is required. On Windows XP/2k system a few messages will pop up – the
last message should say something like: “Hardware has been installed successfully
and is now ready for use”!

If you connected the USB interface before installation of the driver (or if you
are using Win98/Me) – don’t worry. Windows will ask you for a driver, which can be
found unpacked on the supplied CD as well. Windows will usually show a driver install-
ation dialog. You are asked to specify the path to the driver. In Windows 2k/XP you
have to select “manual install” before. Don’t choose “search the web” or something
like this, as the driver is located on the CD in the previously specified directories.

So simply select the driver directory for your Windows version and maybe a few addi-
tional files, which are not directly found by the system (all files are located in the
same directories, which will be described in the following section)...

Usually Windows XP or newer will now proceed with a note, in which Microsoft warns
you the driver has not been signed or verified – this is an irrelevant warning and you
can confirm it without any risk. In this case the FTDI driver is signed and the system
should not show a warning.

- 36 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

For 32 and 64 Bit Windows XP, Vista, Server 2003 and 2000 Systems:

<CD-ROM-Laufwerk>:\Software\USB_DRIVER\Win2k_XP_Vista\FTDI_CDM2.02.04\
For old Windows 98SE/Me:

<CD-ROM-Laufwerk>:\Software\USB_DRIVER\Win98SE_ME\FTDI_D2XX\
A few old Windows versions, e.g. Win98SE require a restart after the driver installa-
tion! ATTENTION: For Win98/Me you can only install one of the two driver versions,
either D2XX or VCP (Virtual Comport)! There is no driver with both functions for these
old systems. Usually no Virtual Comport will be available, because the standard Win-
dows version of the RP6Loader is using the D2XX driver (This can be changed if re-
quired – you may contact our Support Team for help!).

3.3.1. Check if the device is properly connected

In order to check the correct connection of the device in Windows XP, Vista, 2003 and
2000 you may use either the RP6Loader or the Windows device manager:
Right click on My Computer --> Properties --> Hardware --> Device Manager
OR alternatively: Start --> Settings --> Control Panel --> Performance and Mainten-
ance --> Hardware --> Device manager
Check the tree view for “Connections (COM and LPT)” for a "USB-Serial Port (COMX)"
– in which X represents the port-number or check “USB-Controller” for a “USB Serial
Converter” and make sure it is not any standard USB serial port adapter that may be
connected to your computer.

3.3.2. Driver uninstall

If you should ever need to uninstall the driver (No, please do not uninstall anything
now – this is just for your information): If you have been using the CDM-installation
software you may uninstall tools by selecting Start --> Settings --> Control Panel -->
Software. The list should contain an entry “FTDI USB Serial Converter Drivers”. Just
select it and click on remove/uninstall!

If you installed the driver manually, you may execute the program "FTUNIN.exe" in
the directory of the USB-driver on the CD!

Attention: Any USB-->RS232 Adapter using the FTDI chipsets might be using this
driver as well!

- 37 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=control
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=maintenance
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=maintenance
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=system
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=properties

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.4. Connecting the USB Interface – Linux
Windows users can skip this section!

The Linux Kernel 2.4.20 or higher already includes the required driver for our USB In-
terface FT232R (at least for the compatible predecessor, the FT232BM). The device
will be recognized automatically and you will not have to do anything else. Just in case
you run into trouble, you may obtain a Linux driver (and support including new re-
leases of the drivers and documentation) directly from FTDI:

http://www.ftdichip.com/
Having connected the device to a Linux machine, you can check if the USB-Serial Port
has been recognized properly by entering the command:

cat /proc/tty/driver/usbserial

That's all.

Just for your informatin: the Windows version of the RP6Loader uses the D2XX drivers
and will display the complete USB names in the port list (e.g. “USB0 | RP6 USB Inter-
face | serialNumber”). In contrast, the Linux version of the program will display the
virtual comport names /dev/ttyUSB0, /dev/ttyUSB1 or similar. Additionally standard
comport labels (“dev/ttyS0”, etc.) will be displayed as well. In this case you will have
try out which is the correct port!
Unfortunately Linux does not provide an easily installable driver for both functions and
for this reason we prefer the usage of a Virtual Comport driver here, which is already
included in the standard Linux kernels. Installation of the D2XX driver would require
some manual work.

3.5. Finalizing Software installation
That was all you have to do for software and USB Interface setup!

Finally you may copy the most important files from the CD to your harddisk (espe-
cially the complete directory “Documentation” and “Examples”, if not doned yet). Like
this, you don't need to search for the CD all the time you need a specific file! The dir-
ectories on the CD are named after the contained Software packages, so you can find
everything easily.

If you should ever loose the CD, you can download all relevant Software from our
Homepage. There you will also find the most up to date version which may include im-
portant bug fixes or new features.

- 38 -

http://www.ftdichip.com/

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

3.6. Inserting Batteries
It's about time to get to the Robot itself. First of all the robot needs 6 batteries!

We recommend to use high-quality NiMH Mignon batteries (manufacturers e.g. Sanyo,
Panasonic, and others) specifying a real world capacity of at least 2000mAh (optimal
capacity is 2500mAh)! Please do not use standard alkaline batteries, which would turn
out to be extremely expensive over time and also cause unnecessary environmental
pollution.

We suggest to use precharged batteries! Always make sure to use batteries
charged at the same level (all batteries charged or all discharged) and to use relat-
ively new batteries! Batteries may wear out by storage time, by charging cycles, char-
ging style and temperature. It's best to use new batteries instead of aged ones, which
were laying around in the shelf for the last few years. It is also very important to use
nearly equal battery cells only! Same capacity, same age, same charge level...

If you prefer an external charger (highly recommended, but not in-
cluded in the delivery!), you have to install batteries ONCE only! We
highly recommend a microcontroller charging system, designed to
optimally charge the batteries! For your own safety, please use certi-
fied and verified charging devices only!

Not using an external charger equipped with a suitable adapter plug will require a
rather time consuming procedure of removing discharged batteries from the system,
re-charging and re-inserting them!

Inserting the batteries:

First of all you have to loosen the four screws fixing the mainboard
(s. figure).

Now carefully lift the main board at the back side (see figure).

You do NOT need to unplug the
tiny 3-pin connector of the
bumper PCB (see fig.)! Be care-
ful to touch the main board at
the edges and at larger plastic
parts only in order to avoid static
discharges!

The main board is wired to the
engines, the encoders and the
battery holder by a bundle of
soldered cables. Please move
these cables – depending on
their position – carefully out of
the way.

- 39 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

Please take out the black battery holder afterwards
(see figure).

Make sure that the main
power switch is in the position
“OFF”! The switch lever must
point to the direction of the
text “OFF” and the large cyl-
indrical capacitor on the main
board (see figure)!

Before reactivating the robot,
please check correct orientation of
the batteries.

You may now insert 6 NiMH Batteries with
CORRECT ORIENTATION / POLARITY!

CAUTION: The Fuse will blow if you in-
sert the Batteries with wrong orienta-
tion!

In worst case, this may even damage
parts of the electronics!

Thus you should better directly insert the
Batteries in the correct way to avoid any
problems! There are also markings in the
Battery holder ((+) and (-), the negative
terminal (the flat side) must point to the
springs in the holder) to help you.

Check everything three times – just to
be sure!

Now you can put the batteryholder back
into the chassis. Take care of the cables!
Avoid cables hanging around near the
gears!

Having opened the robot anyway, you may
now do a quick check of both gearing sys-
tems and the encoder wheels for transport
damages or e.g. loosened bolts, screws and
other components. Please very carefully
and slowly turn the backside wheels for
one revolution!

Turning half a revolution forward and backward would be enough already. You should
be able to sense a remarkable resistance, but the wheel must be rotating freely. The
gearwheels have to be moving freely! Please also have a look at appendix A!

- 40 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

The mainboard may now be put back onto the chassis. Move any cables between
mainboard and plastic division bars or other chassis parts away by using your finger
or a long screwdriver, in order to locate the mainboard flat and even on the
chassis! Before fixing it again, please check for any cabling collisions between main-
board, chassis and gear-wheels! Now you may fix the main board by tightening the
four screws – and we're done!

3.7. Charging the Batteries
If you did not install charged batteries already as we recommended it, you will now
have to attach an external charger. Please turn the main power switch into position
“OFF” for charging! Battery charging only works if the Robot is turned off. The main
switch connects the batteries either to the RP6’s electronics or to the charger connect-
or.

Check the polarity of the charger compared to the charging supply plug (labelled
“Charger”) located next to the robot’s main power switch!

You can see a polarity marking on the mainboard in front of
the plug (see figure). The negative terminal is located
on the OUTER METAL PLATE and the positive terminal
on the INNER pin!

Charging time depends on the used charger and the batter-
ies (Microprocessor controlled devices, e.g. Voltcraft 1A /
2A Delta Peak Fast chargers or Ansmann ACS110 / 410 will
need between 3 and 4 hours, standard chargers e.g. AC48

require about 14 hours of charging time) – please read the details in the manual of
the charging device!

Do not turn the robot’s main power on while charging is in progress! Remove
the charger before switching the robot on!

3.8. The first test
ATTENTION! Please read this and the following setion com-
pletely before perfoming the test!

If anything different from the following description happens,
you should turn off the robot immediately and note exactly
what went wrong! If the chapter “Troubleshooting” does not
provide an answer, you may contact the support!

OK – ready to go! Turn the robot on! The two red status LEDs in the middle should
light up. After a small delay they turn off, one of the other red LEDs (SL6) starts
blinking and one of the green LEDs (SL1) is illuminated permanently. This indicates
the absence of a user program in the controller’s memory. If a user program is in the
memory, only the green Status LED SL1 will be blinking.

The yellow PWRON LED should light up for about one second after turning the robot
on – it saves energy to deactivate most sensors, e.g. the encoders.

After approx. 30 seconds, the red blinking LED SL6 and all other LEDs will turn off.
The robot’s microcontroller will automatically switch to standby mode as there is no
user program to execute anyway. Standby mode may be terminated via the USB In-

- 41 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

terface, by pressing the Start/Stop Button or by shortly switching the robot off and
on. Even in standby mode the robot uses a small amount of energy (up to 5mA) – and
please remember to turn off the RP6 completely if you do not want to use the system
for a longer time! With a program in memory the robot will not automatically switch to
standby mode. Instead the system will continue waiting for user commands either
from the serial interface (simply send an “s”), from the I²C Bus or the Start/Stop But-
ton.

3.8.1. Connecting the USB Interface and start RP6Loader

Next we will test a program upload with the USB interface. Please connect the USB in-
terface to the PC (always start by connecting it to the PC!). Then connect the
USB interface to the “PROG/UART” connector of the Robot located directly beside the
Start/Stop Button!

The connector has mechanical polarity protection and you cannot insert the 10-pin
plug with reverse polarity unless you push it really hard.

Now start the RP6Loader.

Depending on selected languages the menus may be
labelled different.

The screenshots show the English versions and you
may alter the language if you want by selecting the
menu “Options->Preferences”, followed by “Language”
(only English or German right now) and pressing OK.
Having altered the language you have to restart the
RP6Loader!

Open a port - Windows

You may now select the USB Port. As long as your
PC does not provide another USB Serial Adapter
with FTDI Controller, the port list will show only
one single entry, which you can select. If there
are several ports, you can identify the correct one
by looking for “RP6 USB Interface” (or “FT232R

USB UART”), followed by a pre-programmed serial number.

If no port is shown, please refresh the list by selecting the menu item
“RP6Loader-->Refresh Port list”!

Open a port – Linux

Linux handles the USB-Serial Adapter just like any
other standard comport. Installing the D2XX
drivers on a Linux-system is not that easy and
modern Linux kernels already provide the stand-
ard Virtual Comport (VCP) drivers. In general, us-
age is similar to Windows, but you will have to try

out which port actually is the RP6 USB interface and you should not remove the USB
Port from the PC while the connection is open (otherwise you may have to restart the
RP6Loader before you can open it again).

- 42 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

The Virtual Comports will be labelled “/dev/ttyUSBx”, in which x represents a number,
e.g. “/dev/ttyUSB0” or “/dev/ttyUSB1”. Also the standard comports labelled
“/dev/ttyS0”, “/dev/ttyS1” will be shown as well.

The RP6Loader remembers the previously selected port and will automatically pre-se-
lect this port at program start (most of the presets and selections are remembered).

Now click on the “Connect”-button! The RP6Loader will try to open the port and check
communication with the robot’s Bootloader. If everything works OK, the black “Status”
field will show “Connected to: RP6 Robot Base ...”, accompanied the measured battery
voltage. If this fails, please wait a second,and retry it! If the retry fails, a more serious
error occurred! In this case immediately switch off the robot and proceed by reading
the chapter “Troubleshooting” in the appendix!

At low battery voltage the program will show a warning message. Whenever you see
this message, you have to recharge batteries. We advise recharging as soon as bat-
tery voltage drops below 5.9V!

Having passed this initial check, you may start a simple self test program in order to
verify that the robot’s subsystems are working properly. First you have to add the
Selftest program to the Hexfile list. This can be done by pressing the “Add” Button
and selecting file “RP6Base_SELFTEST\RP6Base_SELFTEST.hex” in the example direct-
ory. The selected file contains the self test program in a hexadecimal format – that's
why such files are called “Hexfiles”.

The selected file will now appear in the list. This way you may select other Hexfiles
from your own programs or from the other examples and add them to the list

- 43 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

(s. Screenshot, in which we already added a few hex files). The RP6Loader is able to
manage several hexfiles in order to make the upload comfortable. With several expan-
sion modules or different versions of programs you will appreciate this. At termination
of the program the list will be saved automatically! Of course only path names for the
hexfiles are stored. During program development, you need to add a hex file only
once. After a recompilation of the program you can directly upload the new Version
without adding it to the list again (you may use the shortcuts [STRG+D] for upload
only or [STRG+Y] to start the program after a transfer). Path names vary for different
operating systems, thus the RP6Loader uses separate file lists for Windows and Linux.

Now select the file “RP6Base_SELFTEST.hex” from the list and click on “Upload!” at
the top right side below the progress bar. This starts the upload process to the
MEGA32. The upload should be completed within a few seconds (up to 5 seconds for
the self test program).

After the upload is complete, select the “Terminal”-tab at the bottom of the program
window or alternatively select it from the menu “View”.

Start the program by pressing the RP6’s Start/Stop Button,
located near the programming connector (see fig.)! Later
you can use the buttons in RP6Loader Software or use the
keyboard shortcut [STRG]+[S], but by using the hardware
button now, you can directly verify that it works OK.

A warning message should appear in the Terminal. It tells
you that the RP6 is going to start the motors during Test
number 8!

ATTENTION! Please pick up and hold the RP6 in your hands while
test number 8 is running (“Motors and Encoders Test”) or alternat-
ively place the RP6 on top of a suitable object – in order to prevent
the caterpillar tracks from touching the ground surface! During test
number 8 the caterpillars must NOT be touched or blocked!
Otherwise the test will fail most likely! If the RP6 would touch the
ground, the behaviour of the Motors would get influenced, resulting
in a test failure. As a matter of fact the RP6 would also be driving
some distance, forcing you to follow and carry the USB-cable as long
as it lasts…

You have to hold the RP6 in your hands or alternatively place
the RP6 on top of an object (e.g. a small box or remote con-
trol). Even if you place the RP6 on top of an object, please
hold the RP6 with one hand during the test to prevent it from
slipping away and accidentally falling of the table!

This warning message will be displayed directly before test number 8 and must be ac-
knowledged before the test will start.

Please enter the lowercase letter 'x' in the terminal window and hit Enter (you will
have to repeat this procedure whenever a similar message is displayed or a test has
to be aborted...).

- 44 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

At this point the program will out-
put the menu text shown on the
left. The text may change a bit in
future releases!

You can select and start the dif-
ferent test programs by entering
the corresponding number or let-
ter and hit Enter.

We want to run all standard tests – so type '0' and hit Enter!

The following output text will appear in the terminal window:
0

###
###
Test #1

POWER ON TEST
Please watch the yellow PowerOn LED and verify that it lights up!
(it will flash a few times!)

Watch the yellow PowerON LED, which will flash a few times! If it does not flash,
maybe the test was over before you looked at it or a real error occurred. The test pro-
gram however will proceed, as there is no automatic method to detect the correct
functionality of this – this is your job!

By the way the LED displays whether the encoders, the IR receiver and the current
sensors are activated. Together with the LED, these devices consume a respectable
amount of current - nearly 10mA --> to save power, we will only activate these
devices if required.

The program now flashes all Status LEDs. A few times all LEDs together and then each
of them alone. Here you can see if all LEDs are working correctly or if one of them is
damaged.

The output looks like this:
Test #2

LED Test
Please watch the LEDs and verify that they all work!
Done!

Battery sensor test is next. In fact, the sensor already has been tested as the
RP6Loader has shown the battery voltage before. The battery check is now repeated
to complete the list:
###
###
Test #3

Voltage Sensor Test
Be sure that you are using good accumulators!

Enter "x" and hit return when you are ready!

- 45 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

Please acknowledge by entering 'x'!
x
Performing 10 measurements:
Measurement #1: 07.20V --> OK!
Measurement #2: 07.20V --> OK!
Measurement #3: 07.20V --> OK!
Measurement #4: 07.20V --> OK!
Measurement #5: 07.20V --> OK!
Measurement #6: 07.20V --> OK!
Measurement #7: 07.20V --> OK!
Measurement #8: 07.20V --> OK!
Measurement #9: 07.20V --> OK!
Measurement #10: 07.20V --> OK!
Done!

This is like the output should look like in general – values may vary in the acceptable
range of 5.5 up to 9.5V. An error is shown if values are out of these limits. If an error
occurs, please check the batteries – they may not have been charged properly or are
defect! If batteries are OK, then the sensor (two resistors...) might be damaged.

We will now check the bumpers. In order to test them you have to press the mi-
croswitches and observe the LEDs and the displayed messages in the terminal. Each
“bump” has to be shown in the terminal and with the LEDs. The output message dis-
plays:
Test #4

Bumper Test
Please hit both bumpers and verify
that both Bumpers are working properly!
The Test is running now. Enter "x" and hit return to stop this test!
OBSTACLE: LEFT!
FREE: LEFT!
OBSTACLE: RIGHT!
FREE: RIGHT!
OBSTACLE: LEFT!
FREE: LEFT!
OBSTACLE: RIGHT!
FREE: RIGHT!
OBSTACLE: LEFT!
OBSTACLE: RIGHT!
FREE: LEFT!
FREE: RIGHT!

If this was successful, you may quit the test by typing 'x' + Enter

Now we will check the light sensor. In order to test these sensors, please cover each
of them subsequently with one hand, move your hand close to these sensors and
check for changes of the measured values and the LEDs – decreasing light intensity
must result in decreasing measurement values! The LEDs will display which sensor is
sensing brighter light. Usually, daylight produces values ranging from 200 to 900.

If you point a powerful torch at the sensors and illuminate them directly or if you hold
the robot into bright sunlight, measurement values may rise to over 1000. In a rather
dark room, values should be below 100.

Start the test by typing 'x' + Enter:
Test #5

Light Sensor Test
Please get yourself a small flashlight!
While the test runs, move it in front of the Robot
and watch if the values change accordingly!

- 46 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

Enter "x" and hit return when you are ready!
x
The Test is running now. Enter "x" and hit return to stop this test!
Performing measurements...:
Left: 0510, Right: 0680
Left: 0511, Right: 0679
Left: 0512, Right: 0680
Left: 0560, Right: 0710
Left: 0630, Right: 0750
Left: 0640, Right: 0760
Left: 0644, Right: 0765

[...]

After testing the sensors please abort this test sequence by entering 'x'!

We now proceed with the ACS Test. There is nothing to confirm and the test will start
immediately. Now waive a hand or an obstacle in front of the robot, but take care to
clear a large area in front of the robot to prevent detection of other objects.

The test may show the following output:
Test #6

ACS Test
Please move your hand or other obstacles in front of the Robot
and verify that both ACS channels are working properly!

ACS is set to Medium power/range!

You can also send RC5 Codes with a TV Remote Control
to the RP6 - it will display the Toggle Bit, Device Adress
and Keycode of the RC5 Transmission!
Make sure your remote control transmits in RC5 and not
SIRCS or RECS80 etc.! There are several other formats that will NOT work!

The Test is running now. Enter "x" and hit return to stop this test!
OBSTACLE: LEFT!
FREE: LEFT!
OBSTACLE: LEFT!
FREE: LEFT!
OBSTACLE: LEFT!
OBSTACLE: RIGHT!
FREE: RIGHT!
FREE: LEFT!
OBSTACLE: LEFT!
OBSTACLE: RIGHT!
FREE: RIGHT!
FREE: LEFT!

The test also allows you to receive messages from RC5 compatible IR remote controls.
In this case the received Toggle bit, Address and Key code will be shown.

To continue, please abort this test by entering 'x'!

Next one is the IRCOMM test procedure, which can be startet by entering 'x'. The pro-
cedure starts transmitting IR data-packets, displays received packets in the terminal
and automatically checks if the received data is OK (using rather powerful IR-diodes,
the IRCOMM usually will receive it’s own signals back. Only in the absence of any re-
flecting objects or a ceiling the system may eventually fail – but this would be a very
unusual condition).

- 47 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

The output should look like this:

TEST #7

IRCOMM Test
[...]

TX RC5 Packet: 0
RX RC5 Packet --> Toggle Bit:0 | Device Address:0 | Key Code:0 --> OK!
TX RC5 Packet: 3
RX RC5 Packet --> Toggle Bit:0 | Device Address:3 | Key Code:3 --> OK!
TX RC5 Packet: 6
RX RC5 Packet --> Toggle Bit:0 | Device Address:6 | Key Code:6 --> OK!
TX RC5 Packet: 9
RX RC5 Packet --> Toggle Bit:0 | Device Address:9 | Key Code:9 --> OK!
TX RC5 Packet: 12
RX RC5 Packet --> Toggle Bit:0 | Device Address:12 | Key Code:12 --> OK!
[...]
TX RC5 Packet: 57
RX RC5 Packet --> Toggle Bit:1 | Device Address:25 | Key Code:57 --> OK!
TX RC5 Packet: 60
RX RC5 Packet --> Toggle Bit:1 | Device Address:28 | Key Code:60 --> OK!
TX RC5 Packet: 63
RX RC5 Packet --> Toggle Bit:1 | Device Address:31 | Key Code:63 --> OK!

Test finished!
Done!

The Test should take about 5 seconds.

Finally we will proceed with the Motor and Encoder Test! You
must pick up the RP6 with your hands – the caterpillars must
not touch the floor or any other objects!

Otherwise the test will most likely fail! If you put the RP6 on
top of an object like described above, please make sure the
RP6 cannot accidently fall off the table.

This test will not take too long – approximately 30 seconds. Carefully check for error
messages in this test! It may happen that a single measurement fails, causing the test
sequence to end with an error message. If the motors are starting as expected and
the test is aborted somewhere in the middle, there is nothing to worry about. If this
happens, please retry – after reading the “Troubleshooting”-chapter in the appendix!

The test procedure will ramp up both motor speeds up to 50% of the maximum speed
and will alternate the turning direction of the motors a few times. The system will con-
stantly be checking and supervising measurement values from encoders and current
sensors. If something got damaged during the transport (e.g. a short circuit in one of
the motors or a blocked gear – which should have been noticed in the previous testing
phase after inserting the batteries) the monitored current values will rise to high
levels and cause the test to be aborted immediately.

- 48 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

Sample test report (abbreviated):
###
###
TEST #8

Automatic speed speed regulation test

###
ATTENTION!!! DANGER!!! WARNING!!!
Make sure that the RP6 can __NOT__ move!
The caterpillar tracks should __NOT__ touch the ground!
(hold it in your hands for example...)
THE RP6 WILL START MOVING FAST! YOU CAN DAMAGE IT IF YOU DO NOT
MAKE SURE THAT IT CAN __NOT__ MOVE!
Make sure both crawler tracks are FREE RUNNING! DO NOT BLOCK THEM!
--> OTHERWISE THE TEST WILL FAIL!
###

Enter "x" and hit return when TO START THIS TEST!
Make sure the RP6 can not move!

x
T: 000 |VL: 000 |VR: 000 |PL: 000 |PR: 000 |IL: 000 |IR: 003 |UB: 07.28V
T: 000 |VL: 000 |VR: 000 |PL: 000 |PR: 000 |IL: 002 |IR: 003 |UB: 07.28V
[...]
Speed Left: OK
Speed Right: OK
T: 020 |VL: 000 |VR: 000 |PL: 000 |PR: 000 |IL: 000 |IR: 003 |UB: 07.28V
T: 020 |VL: 000 |VR: 000 |PL: 000 |PR: 000 |IL: 000 |IR: 003 |UB: 07.28V
T: 020 |VL: 000 |VR: 000 |PL: 000 |PR: 000 |IL: 000 |IR: 003 |UB: 07.28V
T: 020 |VL: 000 |VR: 000 |PL: 020 |PR: 020 |IL: 006 |IR: 009 |UB: 07.26V
T: 020 |VL: 001 |VR: 014 |PL: 039 |PR: 030 |IL: 020 |IR: 020 |UB: 07.27V
[...]
Speed Left: OK
Speed Right: OK
T: 040 |VL: 021 |VR: 019 |PL: 037 |PR: 028 |IL: 025 |IR: 021 |UB: 07.25V
T: 040 |VL: 020 |VR: 020 |PL: 037 |PR: 029 |IL: 026 |IR: 022 |UB: 07.25V
T: 040 |VL: 018 |VR: 020 |PL: 044 |PR: 036 |IL: 028 |IR: 023 |UB: 07.23V
T: 040 |VL: 038 |VR: 038 |PL: 055 |PR: 044 |IL: 035 |IR: 029 |UB: 07.23V
T: 040 |VL: 037 |VR: 042 |PL: 055 |PR: 043 |IL: 033 |IR: 028 |UB: 07.24V
T: 040 |VL: 043 |VR: 041 |PL: 052 |PR: 042 |IL: 032 |IR: 026 |UB: 07.23V
T: 040 |VL: 043 |VR: 041 |PL: 052 |PR: 040 |IL: 030 |IR: 024 |UB: 07.24V
T: 040 |VL: 037 |VR: 041 |PL: 052 |PR: 040 |IL: 030 |IR: 023 |UB: 07.24V
T: 040 |VL: 043 |VR: 040 |PL: 050 |PR: 039 |IL: 029 |IR: 022 |UB: 07.24V
Speed Left: OK
Speed Right: OK
T: 060 |VL: 040 |VR: 039 |PL: 053 |PR: 040 |IL: 033 |IR: 024 |UB: 07.24V
T: 060 |VL: 036 |VR: 040 |PL: 053 |PR: 040 |IL: 034 |IR: 026 |UB: 07.24V
T: 060 |VL: 042 |VR: 039 |PL: 052 |PR: 041 |IL: 034 |IR: 027 |UB: 07.23V
T: 060 |VL: 042 |VR: 040 |PL: 063 |PR: 052 |IL: 038 |IR: 032 |UB: 07.22V
T: 060 |VL: 058 |VR: 060 |PL: 068 |PR: 056 |IL: 038 |IR: 032 |UB: 07.25V
T: 060 |VL: 062 |VR: 062 |PL: 067 |PR: 054 |IL: 037 |IR: 029 |UB: 07.22V
T: 060 |VL: 060 |VR: 062 |PL: 067 |PR: 053 |IL: 038 |IR: 028 |UB: 07.23V

[...]

Speed Left: OK
Speed Right: OK
T: 100 |VL: 082 |VR: 078 |PL: 080 |PR: 068 |IL: 043 |IR: 036 |UB: 07.23V
T: 100 |VL: 079 |VR: 079 |PL: 081 |PR: 069 |IL: 047 |IR: 038 |UB: 07.22V
T: 100 |VL: 078 |VR: 082 |PL: 092 |PR: 078 |IL: 049 |IR: 039 |UB: 07.23V
T: 100 |VL: 095 |VR: 099 |PL: 101 |PR: 082 |IL: 055 |IR: 039 |UB: 07.20V
T: 100 |VL: 098 |VR: 100 |PL: 109 |PR: 081 |IL: 056 |IR: 040 |UB: 07.19V
T: 100 |VL: 095 |VR: 099 |PL: 111 |PR: 082 |IL: 062 |IR: 042 |UB: 07.19V
T: 100 |VL: 102 |VR: 101 |PL: 111 |PR: 082 |IL: 058 |IR: 041 |UB: 07.21V
T: 100 |VL: 102 |VR: 101 |PL: 109 |PR: 081 |IL: 056 |IR: 039 |UB: 07.20V
T: 100 |VL: 093 |VR: 100 |PL: 113 |PR: 081 |IL: 063 |IR: 038 |UB: 07.20V
T: 100 |VL: 104 |VR: 099 |PL: 112 |PR: 082 |IL: 056 |IR: 042 |UB: 07.22V
Speed Left: OK
Speed Right: OK
T: 080 |VL: 086 |VR: 071 |PL: 022 |PR: 000 |IL: 020 |IR: 012 |UB: 07.28V
T: 080 |VL: 000 |VR: 000 |PL: 000 |PR: 000 |IL: 001 |IR: 003 |UB: 07.28V
T: 080 |VL: 004 |VR: 011 |PL: 088 |PR: 084 |IL: 051 |IR: 045 |UB: 07.21V
T: 080 |VL: 079 |VR: 101 |PL: 103 |PR: 077 |IL: 064 |IR: 039 |UB: 07.21V

- 49 -

RP6 ROBOT SYSTEM - 3. Hardware and Software Setup

T: 080 |VL: 082 |VR: 076 |PL: 098 |PR: 072 |IL: 061 |IR: 041 |UB: 07.19V
T: 080 |VL: 081 |VR: 081 |PL: 096 |PR: 071 |IL: 055 |IR: 040 |UB: 07.20V
T: 080 |VL: 080 |VR: 082 |PL: 095 |PR: 070 |IL: 057 |IR: 038 |UB: 07.21V
T: 080 |VL: 082 |VR: 080 |PL: 094 |PR: 069 |IL: 058 |IR: 036 |UB: 07.22V
T: 080 |VL: 077 |VR: 080 |PL: 095 |PR: 069 |IL: 056 |IR: 036 |UB: 07.23V
Speed Left: OK
Speed Right: OK
T: 060 |VL: 082 |VR: 079 |PL: 095 |PR: 069 |IL: 054 |IR: 038 |UB: 07.22V
T: 060 |VL: 079 |VR: 079 |PL: 095 |PR: 071 |IL: 058 |IR: 040 |UB: 07.21V
T: 060 |VL: 082 |VR: 081 |PL: 093 |PR: 070 |IL: 056 |IR: 039 |UB: 07.19V
T: 060 |VL: 069 |VR: 070 |PL: 080 |PR: 054 |IL: 048 |IR: 029 |UB: 07.23V
T: 060 |VL: 064 |VR: 059 |PL: 075 |PR: 054 |IL: 046 |IR: 029 |UB: 07.22V
T: 060 |VL: 058 |VR: 057 |PL: 075 |PR: 055 |IL: 043 |IR: 032 |UB: 07.24V
T: 060 |VL: 059 |VR: 059 |PL: 075 |PR: 056 |IL: 046 |IR: 034 |UB: 07.23V
T: 060 |VL: 060 |VR: 059 |PL: 075 |PR: 056 |IL: 046 |IR: 035 |UB: 07.23V
T: 060 |VL: 057 |VR: 060 |PL: 076 |PR: 056 |IL: 047 |IR: 033 |UB: 07.22V
T: 060 |VL: 058 |VR: 061 |PL: 077 |PR: 055 |IL: 045 |IR: 030 |UB: 07.23V
Speed Left: OK
Speed Right: OK
T: 040 |VL: 045 |VR: 035 |PL: 043 |PR: 023 |IL: 027 |IR: 018 |UB: 07.24V
T: 040 |VL: 000 |VR: 000 |PL: 011 |PR: 000 |IL: 013 |IR: 007 |UB: 07.28V
T: 040 |VL: 002 |VR: 000 |PL: 038 |PR: 038 |IL: 015 |IR: 014 |UB: 07.24V
T: 040 |VL: 038 |VR: 061 |PL: 059 |PR: 052 |IL: 035 |IR: 035 |UB: 07.24V
T: 040 |VL: 044 |VR: 043 |PL: 057 |PR: 044 |IL: 035 |IR: 028 |UB: 07.23V
T: 040 |VL: 038 |VR: 039 |PL: 057 |PR: 044 |IL: 035 |IR: 027 |UB: 07.24V
T: 040 |VL: 039 |VR: 042 |PL: 055 |PR: 043 |IL: 033 |IR: 025 |UB: 07.23V
T: 040 |VL: 043 |VR: 041 |PL: 053 |PR: 041 |IL: 032 |IR: 023 |UB: 07.24V
T: 040 |VL: 040 |VR: 041 |PL: 054 |PR: 041 |IL: 032 |IR: 023 |UB: 07.25V
Speed Left: OK
Speed Right: OK
T: 020 |VL: 037 |VR: 040 |PL: 054 |PR: 041 |IL: 031 |IR: 024 |UB: 07.24V
T: 020 |VL: 022 |VR: 019 |PL: 022 |PR: 012 |IL: 017 |IR: 016 |UB: 07.28V
T: 020 |VL: 000 |VR: 000 |PL: 000 |PR: 000 |IL: 004 |IR: 007 |UB: 07.28V
T: 020 |VL: 000 |VR: 006 |PL: 030 |PR: 027 |IL: 020 |IR: 020 |UB: 07.24V
T: 020 |VL: 013 |VR: 019 |PL: 043 |PR: 030 |IL: 029 |IR: 022 |UB: 07.24V
T: 020 |VL: 026 |VR: 020 |PL: 038 |PR: 029 |IL: 027 |IR: 022 |UB: 07.24V
T: 020 |VL: 020 |VR: 021 |PL: 038 |PR: 029 |IL: 028 |IR: 023 |UB: 07.25V
T: 020 |VL: 021 |VR: 020 |PL: 038 |PR: 029 |IL: 028 |IR: 023 |UB: 07.24V
T: 020 |VL: 018 |VR: 019 |PL: 038 |PR: 030 |IL: 027 |IR: 024 |UB: 07.24V
T: 020 |VL: 022 |VR: 020 |PL: 037 |PR: 029 |IL: 027 |IR: 023 |UB: 07.23V
Speed Left: OK
Speed Right: OK

***** MOTOR AND ENCODER TEST OK! *****

The measurement values reported in this test are (from left to right): T - desired
speed, VL/VR – measured speed left/right, PL/PR – PWM value left/right, IL/IR – mo-
tor current left/right, UB – battery voltage.

If the output values look similar to the above report – everything is OK.

 If things do not work properly and error messages appear, please read the
“Troubleshooting”-chapter in the appendix!

That's it. If all systems passed the test, you may now continue with the next chapter.

- 50 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4. Programming the RP6
At last, we have reached the programming section.

4.1. Configuring the source code Editor
We will start by setting up a small development environment. The so-called
“source code” of our C programs needs to be entered and edited somehow!

Of course we will not use text processing systems like OpenOffice or Word! This may
not be obvious for everyone and therefore we explicitly emphasize this. Office Soft-
ware may perfectly enable you to write a manual like this one, but they are com-
pletely inadequate for software development. Source code is just plain text – without
any formatting. Text sizes, fonts and colours are meaningless to the compiler...

However, for human beings, automatic coloured highlighting of special keywords or
text passages (e.g. comments) can be very helpful. This and serveral other features
are included in Programmers Notepad 2 (we will simply call it “PN2” in the following
chapters), which will be used as our source code editor (ATTENTION: Linux users will
need to use another, similar editor. Usually Linux provides several pre-installed edit-
ors, e.g. kate, gedit, exmacs and others).

Apart from highlighting keywords and equivalent structures (this is so-called “syntax
highlighting”) the editor offers rudimentary project mangement. You may organize a
bundle of source files in a project. Additionally PN2 allows you to comfortably call pro-
grams like AVR-GCC to compile programs by clicking on a single menu entry. AVR-
GCC is a plain command line program, lacking any kind of graphical interface...

The most recent version of Programmers Notepad can be found at the project’s
homepage:

http://www.pnotepad.org/

4.1.1. Creating menu entries

ATTENTION: You may skip this chapter if PN2 already provides menu-entries.
(These menu-entries labelled “[WinAVR] Make All”, etc.. can be found in the menu.
Please check the menu for these entries). This is not included in all versions of PN2.
And you might be interested to add other programs to the menu.

Start PN2 and select “Add Tools...” in the menu “Tools” (see Screenshot).

- 51 -

http://www.pnotepad.org/

RP6 ROBOT SYSTEM - 4. Programming the RP6

You are now entering the options
dialog, which allows you to
change several settings. However
we will only add new entries to
the tools menu.

To proceed, select “C/C++” in the
dropdown list to the “Scheme:”-
menu!

Click on “Add”!

The dialog on the left should ap-
pear.

Please exactly enter the things
you see on the screenshot.

The phrase “%d” refers to the
directory of the selected file and
“%d\make_all.bat” refers to the
batch file, which can be found in
any of the sample RP6 projects.

As an example of a Shortcut
entry you may enter [STRG] +
[M] with the keyboard!

This entry will start the “make”
tool by calling the
“make_all.bat” batchfile, which
initiates the compilation job of
files in the corresponding direct-
ory of the selected file. We will
discuss this method in the fol-
lowing chapters.

- 52 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

As an alternative method to “%d/make_all.bat” you may also simply enter “make”
into the field “Command” and “all” into the “Parameters” field.

In fact, the batch file simply executes exactly these commands, but the batch file sim-
plifies starting the compiler from Windows Explorer.

Now click OK – and a new entry will be displayed in the list:

...click on “Add” once again!

Just like for make all, you now have to enter
all you see on the screenshot and click on OK.

This will create a new entry in the List:
“[RP6] MAKE CLEAN”

This entry allows you to comfortably delete all temporary files, which are generated
during the compilation process. Usually we will not need those temporary files after
successful compilation. By the way: the generated hexfile will not be deleted and may
still be transferred to the robot.
As mentioned before (alternatively to “%d/make_clean.bat”) you may also enter
“make” into the “Command” field and “clean” into the “Parameters” field.

Leave the options menu by clicking “OK”.

- 53 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.1.2. Configure Syntax Highlighting

Another setting you may change is the Syntax Highlighting. You can add a few
“Keywords” to the standard C/C++ Scheme. You may directly Copy & Paste ([STRG]+
[C] = copy, [STRG]+[V] = paste/insert) them into the dialog-field:

int8_t int16_t int32_t int64_t uint8_t uint16_t uint32_t uint64_t

Then click “Sort” and OK!

Attention: Later versions of WinAVR and Programmers Notepad (WinAVR-20070525)
already include these Keywords in Programmers Notepad! If you see these keywords
already in the list, you do not have to modify these settings! These latest versions of
Programmers Notepad will also look slightly different from the screenshots in this
manual.

- 54 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

After customizing and opening a sample project according to the next section PN2
should look like in the following screenshot:

On the left side you see all sample projects in a treeview, the the source editor (fea-
turing the previously discussed syntax highlighting) is on the right and and the tool
output (in this case the compiler output) is on the bottom.

You can customize PN2 in various other ways and it provides a great number of useful
functions.

- 55 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.1.3. Opening and compiling sample projects

Let’s try if everything works fine and open all the sample
projects:

Select “Open Project(s)” in the “File” menu.

In the standard file select dialog, you have to search for the
subdirectory “RP6Base_Examples” in the directory of the
example programs.

Open the file “RP6BaseExamples.ppg”, which is a PN2 project
group. It will load all example programs and the RP6Library as
well into the Projects list. This way, you can comfortably browse
through the example programs and look up functions in the
RP6Libary easily.

Now open the first example program at the top of the projects treeview
(“Example_01_LEDs” and select the file “RP6Base_LEDs.c”)! Simply double click on
“RP6Base_LEDs.c” and a source file editor will be opened!

You should see the output window at the bottom of PN2. If not, you may activate the
window by selecting View->Output in the menu or (it the window is too small) by
dragging the edges with the mouse (the mouse cursor will change its shape into a
double arrow at the upper edge of the narrow grey area labelled “Output” belonging to
the lower program window...).

Just take a quick look at the source code in the editor if you like. Of course you are
not expected to understand all the text right now, but we will soon learn how to
handle these codes. Just for a start: the green colored textlines are comments, which
are not part of the program itself and only document what the program does. We will
explain this (another copy of the program without any comments exists to show you
how short the source really is. Comments will enlarge it quite a lot, but are very useful
for documenting the program flow. The uncommented version may be used to copy
parts of the code into your own programs!).

Now we can check the compiling functionality.

The Tools-menu should display both previously added
menu entries (see figure) or alternatively the standard
[WinAVR]-entries of PN2. You may select any of these,
usually both will work without any problem.

Now please click on “MAKE ALL”!

PN2 will now call the previously described batch file
“make_all.bat”, which will run “make”. We will explain
what “make” does later.

The example program gets translated (=“compiled”) and a hexfile is generated, which
contains the special code for the microcontroller and may be loaded and executed!

- 56 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

The compiler will generate a great number of temporary files (using file extensions
like “.o, .lss, .map, .sym, .elf, .dep”). You do not have to look at any of these files and
you may use the newly created tool “make clean” to easily delete these files! Only the
hexfile will is an important result for you! And “make clean” will not delete the hexfile.

Starting the MAKE ALL command in the menu will result in the following output
(however the listing is abbreviated and may deviate from this example a bit!):

> "make" all
-------- begin --------
[...]
Compiling: RP6Base_LEDs.c
avr-gcc -c -mmcu=atmega32 -I. -gdwarf-2 -Os -funsigned-char -funsigned-bitfields -fpack-struct
-fshort-enums -Wall -Wstrict-prototypes -Wa,-adhlns=RP6Base_LEDs.lst -I../../RP6lib
-I../../RP6lib/RP6base -I../../RP6lib/RP6common -std=gnu99 -MD -MP -MF .dep/RP6Base_LEDs.o.d RP6-
Base_LEDs.c -o RP6Base_LEDs.o
Compiling: ../../RP6lib/RP6base/RP6RobotBaseLib.c
[...]
Creating load file for Flash: RP6Base_LEDs.hex
avr-objcopy -O ihex -R .eeprom RP6Base_LEDs.elf RP6Base_LEDs.hex
[...]

Size after:
AVR Memory Usage

Device: atmega32

Program: 6858 bytes (20.9% Full)
(.text + .data + .bootloader)
Data: 148 bytes (7.2% Full)
(.data + .bss + .noinit)

-------- end --------
> Process Exit Code: 0
> Time Taken: 00:01

An important line is “Process Exit Code: 0” at the very bottom. It tells us that the compil-
ing and linking process has been completed without any errors. Any other codes indic-
ate errors in the source code, which need to be corrected prior to successful compil-
ing. If there are mistakes in the source code, the compiler issues several error mes-
sages in the output, which contain more info about what causes the error.

However you must understand that the “Process Exit Code: 0”-message does not im-
ply an error-free program! Of course the compiler will not be able to detect logical er-
rors in your program and it will not prevent the robot from hitting the wall ;-)

IMPORTANT: The output can also contain warnings, which might be helpful to identi-
fy important problems! Please look carefully for warning messages and try to solve
such problems directly after you see them! PN2 uses colors to highlight warnings and
errors. This allows you to easily see important messages. The program will also list
the line number referring to the error message. You can click on the colored message
lines and PN2 will automatically jump to the referenced line in the source code.

- 57 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Also very helpful is an overview labelled “AVR Memory Usage” at the end:
Size after:
AVR Memory Usage

Device: atmega32
Program: 6858 bytes (20.9% Full)
(.text + .data + .bootloader)
Data: 148 bytes (7.2% Full)
(.data + .bss + .noinit)

This indicates that our program occupies 6858 Bytes in memory and reserves 148
Bytes RAM for static variables (of course this does not include dynamic values for
Heap and Stack, but explaining this would go beyond the scope of this manual. You
should always keep at least a few hundred bytes of free RAM). We have a total
amount of 32KB (32768 Bytes) Flash ROM and 2KB (2048 Bytes) RAM. The Boot load-
er requires 2K out of 32KB Flash ROM – leaving 30KB for free use. Always keep an
eye on the program size, to make sure that it fits into the available memory!
(The RP6Loader will not transfer to large programs!).

The above example program will leave 23682 free bytes in ROM. In fact, this rather
short example program RP6Base_LEDs.c is occupying so much of the available
memory because it contains the whole RP6Library! So don’t worry, there is plenty of
space for your programs and small programs do not require too much memory. The
function library alone occupies more than 6.5KB flash memory, but it handles a lot of
important work for you already. Usually your programs will be smaller than the
RP6Libary.

4.2. Program upload to the RP6
The RP6Loader may now be used to upload the recently compiled program to the
robot. Please add the generated hexfile to the RP6Loader’s file list by clicking “Add”,
make sure the entry is selected and then click “Upload!”, just like you did with the
selftest-program. Now switch to the terminal tab and check the output. Of course, you
will have to start the program before you see any output from it. In the terminal this
is easily done by pressing [STRG]+[S] on the keyboard, by using the menu item
“Start” or by sending a “s” – of course after a reset you have to wait a second for the
“[READY]” message from the Bootloader! The key combination [STRG]+[Y] can be
used as well. After the upload has finished, the program is started straight away with
this shortcut!

The first sample program is very simple and will only start a running LED flashlight
and output some text through the serial interface.

Before you start writing your own programs, we will introduce the language C in a
mini Crash-Course...

- 58 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.3. Why C? And what's “GCC”?
The programming language C is widely being in use – in fact, C is the standard lan-
guage, which anyone interested in software development should have used at least
once. C compliers are available for nearly every microcontroller currently on the mar-
ket and for this reason, all recent robots by AREXX Engineering (ASURO, YETI and
RP6) can be programmed in C.

The popularity of C leads to a vast amount of documentation on the internet and in lit-
erature, allowing beginners to easily study the programming language. But remem-
ber: C is a rather complex language, which cannot be learned within a few days
without prior programming experience (so please don’t throw the robot out of the
window if things aren't working straight away ;-)).

Luckily, the basics are easily understood and programmers may continuously develop
knowledge and experience. It requires some initial effort! You can not learn C auto-
matically – this could be compared to learning a foreign language.

But it's worth the effort, as basic C knowledge will simplify learning other program-
ming languages as the concepts are often very similar.

Just like for our other robots, the RP6 requires a special version of the C compiler
from the GNU Compiler Collection (abbreviation: GCC). The GCC is a universal compil-
ing system, supporting a great variety of languages such as C, C++, Java, Ada and
FORTRAN.

GCC’s target support is not restricted to AVR. It may be used for much bigger systems
and knows a few dozen different targets.

The most prominent project using the GCC is the famous Linux project, of course.
Most of the programs for Linux have been compiled by GCC. Thus it can be considered
as a very professional and stable tool, which is being used by several big companies.

By the way: If this manual is referring to “GCC” we do not necessarily mean the com-
plete Compiler Collection, but the C compiler only. Originally “GCC” had been in use as
an abbreviation for “GNU C Compiler” – the new meaning became necessary after
adding some other languages.

If you would like to learn more about GCC we invite you to visit the official GCC web-
site: http://gcc.gnu.org/

GCC does not directly support the AVR target and must be adapted. The adapted ver-
sion of GCC is named AVR-GCC. The WinAVR distribution contains a ready to use ver-
sion for Windows users. Unix users will usually have to compile a version by them-
selves and we expect that you have completed this already.

- 59 -

http://gcc.gnu.org/

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.4. C – Crash Course for beginners
This chapter ony provides a short introduction to C-program-
ming, discussing only the absolutely required minimum amount of
things used for RP6. This section has to be seen as an overview of
general possibilities and methods of C. We will present a few ex-
amples and basics, but further investigation on these topics is up to
the reader!

So this chapter is not more than a tiny crash course. A complete introduction is far
beyond the scope of this manual and would require rather thick textbooks. Luckily the
market provides a great number of good books on this topic.

A few1 may be viewed online free of charge.

4.4.1. Literature

The following books and tutorials describe C-programming mainly for PC and other
large computers. A lot of details in these tutorials do not apply to AVR microcontrol-
lers – the language is the same, but most libraries for typical PC-usage are a bit too
large for small 8 bit microcontrollers. The best example may be the “printf” function, a
must have on a PC! The “printf” function is available for microcontrollers as well, but
it requires a lot of memory space and execution time, so we do not prefer to use this
function. Instead we will show some more effective alternatives for our applications.

Some C Tutorials / Online-books (just a very small selection):

http://www.its.strath.ac.uk/courses/c/

http://www.eskimo.com/~scs/cclass/notes/top.html

http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

http://en.wikibooks.org/wiki/C

http://www.le.ac.uk/cc/tutorials/c/

http://stuff.mit.edu/iap/c/CrashCourseC.html

There are also lot of good textbooks – in order to get an overview you can start by
visiting a library or a bookshop!

However you do not need to buy a book if you just want to do a few experiments with
the robot! The major part of programming experience has to be acquired "Learning by
doing" anyway!

All relevant information can be found on the mentioned websites. The sample pro-
grams available on the RP6 CD are also quite extensive and show a lot of things. The
tutorial in this manual is also good enough for the first experiments.

An AVR specific tutorial for beginners can be found here:

http://www.avrtutor.com/
for example. This website also mentiones some tools (programming equipment, etc.)
and other things, which are not required for the RP6. Nevertheless, it's worth to have
a look at it.

1 A web-search on “c tutorial” results in millions of hits! Of course there are not really that
many, but there should be quite some good ones out there...

- 60 -

http://www.eskimo.com/~scs/cclass/notes/top.html
http://www.its.strath.ac.uk/courses/c/
http://www.avrtutor.com/
http://stuff.mit.edu/iap/c/CrashCourseC.html
http://www.le.ac.uk/cc/tutorials/c/
http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

RP6 ROBOT SYSTEM - 4. Programming the RP6

Additional information can also be found on the WinAVR-Homepage and in the WinAVR
PDF-documentation, respectively:

http://winavr.sourceforge.net/
http://winavr.sourceforge.net/install_config_WinAVR.pdf
And especially the AVR-LibC documentation:

http://www.nongnu.org/avr-libc/user-manual/index.html
which can also be found as a PDF on the RP6 CD!

Of course you do not have to read all these tutorials and books! This list is only a
guide for gathering more information. Tutorials vary in size and details, but it cer-
tainly helps to read more than one.

A general AVR community and info page is

http://www.avrfreaks.net/
Here you can find a very nice forum dedicated to AVR Microcontrollers, lots of general
infos, projects, tutorials and code snippets!

4.4.2. First program

As already said - learning by doing is the most efficient way of learning the C lan-
guage. Having read and understood something in this crash course, you should try it
out by yourself!

Of course we will have to discuss a few basics before, but in order to give you an idea
of what we are talking about, let’s just start with a simple C program for the RP6:

1
2
3
4
5
6
7
8
9
10
11
12

/*
 * A small and simple "Hello World" C Program for the RP6!
 */

#include "RP6RobotBaseLib.h"
int main(void)
{

initRobotBase();
writeString("Hello World!\n");

 return 0;
}

If you have never programmed in C before, this “source code” may look like a foreign
language, but the basic concepts are easy to understand.

The tiny program above is already a complete functional program, but it only initial-
izes the microcontroller and writes the text:

"Hello World!" + Carriage Return / Line Feed

to the serial interface. This is a typical programming example, which may be found in
most books (of course not with the initRobotBase call at the beginning ;)).

To get familiar with the new language, you may copy this small program into a text
editor by yourself and try to compile it.

- 61 -

http://www.nongnu.org/avr-libc/user-manual/index.html
http://winavr.sourceforge.net/install_config_WinAVR.pdf
http://winavr.sourceforge.net/

RP6 ROBOT SYSTEM - 4. Programming the RP6

Anyone feeling bored by the tiny sample program may find a more attractive "Hello
World" program in the RP6 example directory, including a running light with the LEDs
and some more text outputs!

Now let’s discuss the program in Listing 1 and explain it line by line!

Line 1 - 3: /* A small and simple "Hello World" C Program for the RP6! */
These are comment lines and will not be interpreted by the compiler. Comments are
used for documenting the source code and they start with /* and end with */.

Documentation will help understanding programs written by other people, but it will
also be helpful in understanding your own programs as well, especially the source
codes you have written years ago!

You may write comments with any length, or “comment out“ parts of your source
code in order to test another program variant without having to delete the original
code. Apart from these standard multi-line comments GCC also supports single-line
comments initiated by “//”. AFTER “//” any text will be interpreted as a comment until
the end of the line.

Line 5: #include "RP6RobotBaseLib.h"
This includes the RP6 function library, providing a great number of useful functions
and predefined things for low level hardware control. To include such a library we use
so-called header files (with extension “*.h”) to inform the compiler where to look for
these functions. Headers are used for all things in external C-files that should be ac-
cessible in other C-files. Please take a look at the contents of RP6RobotBaseLib.h and
RP6RobotBaseLib.c – this should clarify the basic principle. We will discuss more de-
tails of the “#include”-feature in the pre-processor chapter.

Line 7: int main(void)
This line defines the most important function in the sample program: the main func-
tion. We still have to learn about what functions are in detail, but right now we may
accept the idea that the program starts at this line.

Line 8 and 12: { }
In C, so-called “blocks” can be defined with accolades '{' and '}'.

A block combines several commands.

Line 9: initRobotBase();
A function from the RP6Library gets called here. It will initialize the AVR microcontrol-
ler and configure the AVR’s hardware modules. Most of the microcontroller’s functions
would not work as expected, if we do not initialize them with initRobotBase(), so
please do not forget to always call this function at the beginning of a program!

Line 10: writeString("Hello World!\n");
This calls the function "writeString" from the RP6 Library with the parameter String
"Hello World!\n". The function will output the text to the serial interface.

Zeile 11: return 0;
Our program ends here. We leave the main-function and return zero. A return code is
usually used in larger systems (with operating system) as an error code or for similar

- 62 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=out
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=comment

RP6 ROBOT SYSTEM - 4. Programming the RP6

functions, but is not needed in a microcontroller system. We only need to add this re-
turn value to meet the standard C-conventions (and as we will see later, programs for
microcontrollers will usually never terminate).

This tiny program gave you a first impression of C-programming. Now we have to dis-
cuss some other basics before we can go on with example programs.

4.4.3. C basics

As already mentioned before, a C program is written in pure ASCII (American Stand-
ard Code for Information Interchange) text. It is strictly case sensitive and if a func-
tion is named “MyFavouriteFunction” you will have to call the function by this exact
name! A function call for “myfavouritefunction” would not be recognized!

You can insert any number of spaces, tabs and line breaks between all commands and
symbols without interfering with the programming syntax. As you may have seen in
the sample program the commands have been indented by tabulators to improve the
program’s readability. But that's not necessary! You could write the program text from
line 7 in listing 1 e.g.:

1 int main(void){initRobotBase();writeString("Hallo Welt!\n");return 0;}

This is an identical program, but the text is rather confusing. However we only deleted
tabs, spaces and line breaks! The compiler does not care for formatting styles at all!
(Of course we will need a space as a separator between keywords and variables like
“int” and “main” – and we are not allowed to use a line break between two quotation
marks (at least not without an escape sequence)!)

The accolades { } allow us to combine several assignments and commands to blocks,
which will be needed for functions, conditional statements and loops.

Each assignment is to be terminated by a semicolon ';' to allow the compiler to identi-
fy individual commands.

Before you start typewriting and copying the program snippets from this tutorial we
would like to give you an important advice: most beginners do easily forget to termin-
ate commands by a semicolon – or use the semicolon at wrong locations and wonder
about the strange program behaviour! Forgetting to place one single semicolon at cer-
tain programming sections may result in a great number of error messages – even if
the real error is only one single error. In fact, the first error message will most likely
identify the real error location.

Forgetting to close one of several accolade pairs or bad syntax in spelling commands
belong to the common error patterns for beginners. Compilers do not accept any syn-
tax errors! It takes time getting used to all this rules, but you will quickly learn by trial
and error.

Each and every C-program starts in the main function. Basically any following com-
mands will be executed step by step, sequentially from the beginning to the end.

The AVR Microcontroller is unable to execute several commands simultaneously! This
restriction is not causing any problems as we will have ample options to control the
program flow and jump to other sections of the program (this will be discussed in a
later chapter).

- 63 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=to
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=used
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=getting
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=takes
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=typewriting
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=semicolon
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=marks
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=quotation
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=break
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=line

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.4.4. Variables

First we'll have a look at storing and reading data to and from RAM. Data access is
done through variables. C knows several data types for variables. Basically we will use
8, 16 or 32 Bits integer data types, which may be used either signed or unsigned.
The deserved value range determines the required number of bits for defining a stor-
age location for a variable.
For the RP6 we will use the following data types:

Type Alternative Value range Remarks
signed char int8_t 8 Bit: -128 ... +127 1 Byte
char uint8_t 8 Bit: 0 ... 255 '' unsigned
int int16_t 16 Bit: -32768 ... +32767 2 Bytes
unsigned int uint16_t 16 Bit: 0 ... 65535 '' unsigned
long int32_t 32 Bit: –2147483648 ... +2147483647 4 Bytes
unsinged long uint32_t 32 Bit: 0 ... 4294967295 '' unsigned

By a lack of standardisation, there are several varying sizes defined on different plat-
forms especially for the data type “int” : for our microcontroller the size is 16 bits, but
its 32 bits for (modern) PC's. For this reason we preferred the modern standard defini-
tion: int16_t

These data types are always made up like: [u] int N _t
u : unsigned
int : Integer
N : Number of bits, e.g. 8, 16, 32 or 64
_t : t for “type” to prevent collisions to other symbols
On a small microcontroller, every single byte counts and clearly defined data types
will help to keep track of memory consumption. You can immediately identify a 16bit
data type by the number 16 in the name. The letter “u” at the beginning marks an
“unsigned” data type, whereas this letter is omitted for a “signed” data type.

For the normal (classic) datatypes we only used the “signed” for
“signed char” in the table above, as int and long are defined as
signed types anyway and char is unsigned, even if you do not expli-
citly write this. The reason for these definitions is an AVR-GCC com-
piler option, which is activated in most cases.

The data type “char” will be used for strings, because an “uint8_t”-
definition would lead to a few incompatibilities with standard C librar-
ies and “char” is a clear and logical name for a character/string any-
way. We will explain details on this topic in the RP6Library chapter
for text outputs via the serial interface.

By now we simply note: we always use “char” for characters and
strings, respectively uintN_t or intN_t for integers!

- 64 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

In order to use a variable in a program we have to declare it first by defining the data
type, a name and eventually an initial value for this variable. The name must start
with an alphabetic character (including the underscore “_”), and may contain num-
bers. However the variable’s naming convention excludes a great number of special
characters, e.g. “äöüß#'[]²³|*+-.,<>%&/(){}$§=´°?!^”.

Variable names are case sensitive, which implies aBc and abC are different variables!
Traditionally, programmers use lower case characters at least for the leading charac-
ter of variable names.

The following keywords are already reserved and are NOT useable as variable names,
function names or any other symbols:

auto default float long sizeof union
break do for register static unsigned
case double goto return struct void
char else if short switch volatile
const enum int signed typedef while
continue extern

Furthermore the types float and double are used for floating point numbers, but we
prefer to avoid usage of these data types on small AVR microcontroller. Floating point
numbers are very computation time and memory intensive and usually we are able to
work perfectly well with integers. Most RP6 programs will not require floating num-
bers.

Declaring variables is extremely simple, which may be demonstrated by declaring a
variable named x:

char x;
After its declaration the variable x is valid in the following program lines and may be
used e.g. by assigning a value of 10 to it:

x = 10;
Alternatively we may assign a value to another variable y directly at declaration:

char y = 53;

Basic arithmetic operations may be used as usual:

signed char z; // please note the “signed” in front of char!
z = x + y; // z gets the value z = x + y = 10 + 53 = 63
z = x – y; // z gets the value z = 10 – 53 = -43
z = 10 + 1 + 2 – 5; // z = 8
z = 2 * x; // z = 2 * 10 = 20
z = x / 2; // z = 10 / 2 = 5
The programming language also provides some useful abbreviations:
z += 10; // corresponds to: z = z + 10; this means z = 15 in this case
z *= 2; // z = z * 2 = 30
z -= 6; // z = z - 6 = 24
z /= 4; // z = z / 4 = 8

- 65 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=operation
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=arithmetic
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=basic
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=designator
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=case
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=lower
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=case
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=lower

RP6 ROBOT SYSTEM - 4. Programming the RP6

z++; // abbreviation for z = z + 1; which implies z is now 9
z++; // z = 10 // z++ is called “incrementing z”
z++; // z = 11 ...
z--; // z = 10 // z-- is called “decrementing z”
z--; // z = 9
z--; // z = 8 ...
We previously used the data type “char”. However in most cases we prefer standard
data types in all RP6 programs.

As an example, this: int8_t x;
is identical to: signed char x;
And this: uint8_t x;
is identical to: unsigned char x; // respectively for us this is also true for
“char” only as our char is by default a signed one because of an compiler op-
tion.

4.4.5. Conditional statements

Conditional statements using “if-else”-constructs play an important role in program
flow. They allow us to check whether a condition is true or false and decide if a specif-
ic program part is executed or not.

A small example:

1
2
3
4
5

uint8_t x = 10;
if(x == 10)
{

writeString("x is equal to 10!\n");
}

The declaration in line 1 defines an 8-Bit variable x and assigns the value 10 to it. The
succeeding if-condition in line 2 checks, whether the value of x is equal to 10. Obvi-
ously, this condition will always be true and the program will execute the succeeding
block. It will output “x is equal to 10!”. If we would initialize x with a value of 231 in-
stead, the program would not output anything!

Generally, an if-condition will always have the following syntax:

if (<condition X>)
<command block Y>

else
<command block Z>

Using plain English language we may also read: “If X then do Y else do Z”.

- 66 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

One more example:

1
2
3
4
5
6
7
8
9
10

uint16_t myFavoriteVariable = 16447;
if(myFavoriteVariable < 16000) // If myFavoriteVariable < 16000
{ // then:
 writeString("myFavoriteVariable is less than 16000!\n");
}
else // else:
{
 writeString("myFavoriteVariable is greater than or equal to 16000!\n");
}

“myFavoriteVariable” is set to 16447, which will result in an output “myFavoriteVari-
able is greater than or equal to 16000!“. In this example, the conditional statement is
false and will cause the else-branch to be executed.

As you can see on the name “myFavoriteVariable”, you can use all names for your
variables you can think of, as long as they meet the naming conventions.

We may also use If-then-else-constructs to create complex conditional branches:

1
2
3
4

if(x == 1) { writeString("x is 1!\n"); }
else if(x == 5) { writeString("x is 5!\n"); }
else if(x == 244) { writeString("x is 244!\n"); }
else { writeString("x has a different value!\n");}

Conditional statements may be using the following comparison operators:

x == y Logical comparison for equality
x != y Logical comparison for inequality
x < y Logical comparison for “less than”
x <= y Logical comparison for “less than or equal to”
x > y Logical comparison for “greater than”
x >= y Logical comparison for “greater than or equal to”

Additionally the language provides logical conjunctions:

x && y true, if x is true and y is true
x || y true, if x is true and/or y is true
!x true, if x is false

We are allowed to link, to combine and nest these structures by using conjunctions
and any number of accolade-pairs:

1
1
2

if(((x != 0) && (!(x > 10))) || (y >= 200)) {
writeString("OK!\n");

}

The previously listed conditional statement is true, if x is not equal to zero (x != 0)
AND x is not greater than 10 (!(x > 10)) OR if y is greater than or equal to 200 (y
>= 200). If necessary we could add any number of other conditions, as required in our
program.

- 67 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=logical
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=sameness

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.4.6. Switch-Case

Often we will have to compare a variable to a great number of different values and
decide to execute further program code according to the result of these comparisons.
Of course, we could use a great number of if-then-else conditional statements, but the
language provides a more elegant method by using a switch-case-construct.

A small example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

uint8_t x = 3;
switch(x)
{

case 1: writeString("x=1\n"); break;
case 2: writeString("x=2\n"); break;
case 3: writeString("x=3\n"); // At this point, "break" is missing,
case 4: writeString("Hello\n"); // causing the program to proceed
case 5: writeString("over\n"); // with the next two lines
case 6: writeString("there!\n"); break; // and stop here!
case 44: writeString("x=44\n"); break;

 // The program will jump to this line if none of the previous
// conditions is met:
default : writeString("x is something else!\n"); break;

}

This code snippet works quite similar compared to the previous example with an “if-
else-if-else-if-else...”-conditional structure, but now we use case-branches instead.
There is one main difference – if one condition is true, all the following case-branches
will be executed. If you do not want that – just add a “break” instruction and it will
quit the switch-case construct there.

The output of the example above would be (for the default value x = 3):

x=3
Hello
over
there!
Setting x = 1 would result in an output of “x=1\n” and x = 5 would result in an output
of:

over
there!
You may now understand the “break”-instruction will terminate the case-branches. If
you omit the “break”-instruction, the program will be wading through any following in-
structions until either the end of the switch-construct or another “break” is reached .

If we preset the value x = 7, none of the branches will be true. The program now ex-
ecutes the “default”-branch, resulting in an output of : "The value of x is something
else!\n".
Of course the text output is only an example, but real programs may be using these
constructs to generate various different movements with the robot. Several example
programs use switch-case constructs for finite state machines to implement a simple
behaviour based robot.

- 68 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.4.7. Loops

We need loops if operations need to be repeated a number of times.

Let’s demonstrate the basic principle in an example:

1
2
3
4
5
6
7
8

uint8_t i = 0;
while(i < 10) // as long as i is less than 10...
{ // ... repeat the following code:

writeString("i="); // output "i=",
writeInteger(i, DEC); // output the "DECimal" value of i and ...
writeChar('\n'); // ... a line-break.
i++; // increment i.

}

Obviously the code snippet contains a “while”-conditional loop, generating the se-
quence: “i=0\n”, “i=1\n”, “i=2\n”, ... “i=9\n”. Following the while-conditional header
“while(i < 10)” the block surrounded by the accolades will be repeated as long as the
condition is true. In plain English this may be read as: “Repeat the following block as
long as i is less than 10”. As we have an initial value of i = 0 and increment i at every
loop-cycle, the program will be executing the loop-body 10 times and output the num-
bers from 0 to 9. In the loop-header, you can use the same conditions as in if-condi-
tions.

Beneath the while-loop we can use the “for”-loop which provides similar functionality,
but offers extended features for the loop-header definition.

A sample code snippet may illustrate the for-loop:

1
2
3
4
5
6
7

uint8_t i; // we will not initialize i here, but in the loop-header!
for(i = 0; i < 10; i++)
{

writeString("i=");
writeInteger(i, DEC);
writeChar('\n');

}

This for-loop will generate output identical to the previous while-loop. However, we
could implement several things within the loop-header.
Basically the for-loop is structured as follows:

for (<initialize control variable> ; <terminating condition> ; <modify the control variable>)
{

<command block>
}

Working with microcontrollers, you will often need infinite loops, which virtually may
be repeated eternally. In fact, most microcontroller programs contain at least one in-
finite loop – either to put the program into a well know state for terminating the regu-
lar program flow, or by endlessly performing operations until the device is switched
off.

- 69 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

You may simply build endless loops with while- or for-loops:

while(true) { }
or
for(;;) { }

In both cases the command block will be executed “for ever” (respectively until the
microcontroller receives an external reset signal or the program terminates the loop
by executing the “break”-instruction).

For the sake of completeness we finish this overview by describing the “do-while”-
loop, which may be considered as an alternative to the standard “while”-loop. In con-
trast to “while-loops the “do-while”-loop will at least execute the command block
once, even if the condition is false at the beginning.

The loop-structure is as follows:
do
{

<command block>
}
while(<condition>);

Please remember to place a terminating semicolon! (Of course, standard while loops
will not be terminated with a semicolon at the end!).

4.4.8. Functions

Functions are a key element in programming languages. In the previous chapters we
already met and even used functions, e.g. “writeString”, “writeInteger” and of course
the main-function.

Functions are extremely useful for using identical program sequences at several loca-
tions of a program – the text output functions used in previous chapters are good ex-
amples for this. Copying identical program code to all locations where it is used would
be very unhandy. Additionally, we would unnecessarily waste a lot of program
memory in doing something like this. Using one single function allows us to modify
program modules at a single central location instead of modifying a great number of
copies. Using functions will simplify the program flow and help us to keep the over-
view.

Therefore C allows us to combine program sequences to functions, which are always
structured as follows:

<Return type> <Function name> (<Parameter 1>, <Parameter 2>, ... <Parameter n>)
{

<Program sequence>
}

- 70 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=alternative

RP6 ROBOT SYSTEM - 4. Programming the RP6

Let's explain the idea in a small example with two simple functions and the alerady
known main-function:

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

void someLittleFunction(void)
{

writeString("[Function 1]\n");
}
void someOtherFunction(void)
{

writeString("[Function 2 – something different]\n");
}
int main(void)
{

// Always start an RP6-program by calling this function!
initRobotBase();
// A few function calls:
someLittleFunction();
someOtherFunction();

 someLittleFunction();
someOtherFunction();

 someOtherFunction();
 return 0;
}

The program would display the following text at the output device:

[Function 1]
[Function 2 – something different]
[Function 1]
[Function 2 – something different]
[Function 2 – something different]
The main-function serves as the entry point and any C program will start by calling
this function. Therefore each C program MUST provide a main-function.

In the previous example, the main-function starts by calling the initRobotBase-func-
tion from the RP6Library, which will initializes the microcontrollers hardware. Basically
the initRobotBase-function is structured similar to the two functions in this example.
In the main function, the two previously defined functions get called several times and
the program code of these functions is executed.

Apart from defining functions as described in the previous example, we may also use
parameters and return values. The above example is using “void” as parameter and
return value, which means we do not use any parameters or return values here. The
parameter “void” always indicates functions without a return values, respectively
without parameters.

You may define a great number of parameters for a function and parameters are sep-
arated by commas.

- 71 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

An example will demonstrate the basic idea:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

void outputSomething(uint8_t something)
{

writeString("[The following value was passed to this function: ");
writeInteger(something, DEC);
writeString("]\n");

}
uint8_t calculate(uint8_t param1, uint8_t param2)
{

writeString("[CALC]\n");
return (param1 + param2);

}
int main(void)
{

initRobotBase();
// Now execute a few function calls with parameters:
outputSomething(199);
outputSomething(10);
outputSomething(255);

 uint8_t result = calculate(10, 30); // return value...
 outputSomething(result);
 return 0;
}

Output:

[The following value was passed to this function: 199]
[The following value was passed to this function: 10]
[The following value was passed to this function: 255]
[CALC]
[The following value was passed to this function: 40]
The RP6 Library provides a great number of functions. A quick look at the code of a
few modules and example programs will clarify the basic principles of developing pro-
grams with functions.

- 72 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.4.9. Arrays, Strings, Pointers...

A great number of further interesting C-features are waiting to be discussed, but for
details we will have to refer to available literature!

Most of the program examples can be understood without further study. In the re-
maining sections of this crash course we describe only a few examples and concepts in
a short overview, which of course is not very detailed.

First of all we will discuss arrays. An array allows you to store a predefined number of
elements of a the same data type. The following sample array may be used to store
10 bytes:

uint8_t myFavouriteArray[10];

In one single line we declared 10 variables of identical data type, which now may be
addressed by an index:

myFavouriteArray[0] = 8;
myFavouriteArray[2] = 234;
myFavouriteArray[9] = 45;
Each of these elements may be treated like a standard variable.

Attention: the index always starts at 0 and declaring an array containing n elements
will result in an index ranging from 0 up to n-1 ! The sample array provides 10 ele-
ments indexed from 0 up to 9.

Arrays are extremely helpful for storing a great number of variables with identical
data type and may easily be manipulated in a loop:

uint8_t i;
for(i = 0; i < 10; i++)

writeInteger(myFavouriteArray[i],DEC);
The previous code snippet will output all array elements (in this case without any sep-
arators of line breaks). A quite similar loop may be used to fill an array with values.

In C, strings are handled with by a very similar concept. Standard strings will be
coded by ASCII characters, requiring one byte for each character. Now C simply
defines strings as arrays, which may be considered as arrays of characters. This
concept allows us to define and store a predefined string "abcdefghijklmno" in
memory:

uint8_t aSetOfCharacters[16] = "abcdefghijklmno";
The previously discussed programming samples already contained a few UART-func-
tions for outputting strings with the serial interface. Basically these strings are arrays.
However, instead of handling a complete array, these functions will only refer to the
first element's address in the array. The variable containing this first element's ad-
dress is named “Pointer”. We may generate a pointer to a given array element by
writing &MyFavouriteArray[x], in which x refers to the indexed element. We may find a
few of these statements in sample programs, e.g.:

uint8_t * PointerToAnElement = &aCharacterString[4];
However at this stage you will not need these concepts to understand most of our
programming samples or to write your own programs.

- 73 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.4.10. Program flow and interrupts

As discussed before, a program will be executed basically instruction after instruction
from the top to the bottom. Apart from this standard behaviour, there is flow control
with conditional jumps, loops and functions.

Beneath these usualy things, there are so-called “interrupts”. They may be generated
by several hardware modules (Timer, TWI, UART, external Interrupts etc.) and require
the microcontrollers's immediate attention. In order to respond as soon as possible,
the microcontroller will leave normal program flow and jump into a so-called Interrupt
Service Routine (ISR). This interrupt reaction is virtually independent from the pro-
gram flow. Don't worry! All required ISRs have been prepared in the RP6Library and
take care of all required events. You will not have to implement your own ISRs. All ba-
sic things you need to know about these special interrupt-functions will be discussed
and explained briefly in this section.

Basically the ISR is structured as follows:

ISR (<InterruptVector>)
{

<command block>
}
e.g. for the left encoder connected to the external interrupt 0:

ISR (INT0_vect)
{
 // Here we increment two counters at each signal edge:

mleft_dist++; // driven distance
mleft_counter++; // velocity measurement

}
You can not call these ISRs directly! Calling an ISR is done automatically and may
happen at any time! Any time and in any part of the program an interrupt call may
stop normal program flow (except inside an interrupt service routine or in case inter-
rupts have been disabled). At an interrupt event, the apropriate ISR-function will be
executed and after termination of the ISR, the program will continue execution at the
after the last position in the normal program. This behaviour requires inclusion of all
time critical program parts into the ISR-functions (or disabling interrupts for a short
time). Otherwise delay periods calculated by processor instruction cycles may get too
long, if these delays are interrupted by interrupt events.

The RP6Library uses interrupts for generating the 36kHz modulation signals for in-
frared sensors and IR communication. Additionally they are used for RC5 decoding,
timing and delay functions, encoder measurement, the TWI Module (I²C-Bus) and a
few other applications.

- 74 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.4.11. The C-Preprocessor

In this chapter we will briefly discuss the C-preprocessor, which has been used in the
preceding programming samples already in the line: #include "RP6RobotBaseLib.h"!
The preprocessor evaluates this command before starting the GCC-compiling process.
The command line #include "file" inserts the contents of the specified file at the in-
clude's position. Our example program includes the file RP6BaseLibrary.h, providing
definitions of all user accessible functions of the RP6Library to allow the compiler to
find these functions and to control the compiling process.

However, the preprocessor features a few other options and allows you to define con-
stants (which may be considered as fixed values to the system):

#define THIS_IS_A_CONSTANT 123
This statement defines the text constant “THIS_IS_A_CONSTANT“ with a value of
“123”. The preprocessor simply replaces all references to it by the defined value.
Constants may be considered as text replacements! In the following statement:

writeInteger(THIS_IS_A_CONSTANT,DEC);
“THIS_IS_A_CONSTANT” will be replaced with “123” and is identical to:

writeInteger(123,DEC);
(by the way: the parameter “DEC” in writeInteger is just another constant – in this
case defining the constant base value 10 – for the decimal numbering system.)

The preprocessor also knows simple if-conditions:

1
2
3
4
5
6
7
8
9

#define DEBUG
void someFunction(void)
{
 // Now execute something...
 #ifdef DEBUG
 writeString_P("someFunction has been executed!");

#endif
}

This text output will only be performed if “DEBUG” has been defined (you do not have
to assign a value to it – simply defining DEBUG is enough). This is useful to activate
several text outputs for debugging phases during program development, whereas for
normal compiling you can remove these outputs by outcommenting a single line.

Not defining DEBUG in the preceding sample program would prevent the preprocessor
to pass the contents of program line 7 to the compiler.

The RP6Library also provides macros, which are defined by using a #define state-
ment. Macros allow to process parameters similar to functions. The following example
shows a typical a macro definition:

#define setStopwatch1(VALUE) stopwatches.watch1 = (VALUE)

This definition allows you to call the macro just like a normal function
(e.g. setStopwatch1(100);).

An important detail: You usually do not add semicolons after preprocessor definitions!

- 75 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.5. Makefiles
The “Make”-tool simplifies the compiling process by automatically executing a great
number of jobs required to compile a C program. The automated process is defined in
a so-called “Makefile”, including all command sequences and informations for the
compile process of a project. We provide these makefiles for all RP6 example projects,
but of course you may create makefiles for your own projects as well. We will not dis-
cuss a makefile's structure in all details, as this would go far beyond the scope of this
manual. For all RP6-projects, you can concentrate on the four following entries. Other
entries are not required for beginners and may be ignored.

TARGET = programName
RP6_LIB_PATH=../../RP6lib
RP6_LIB_PATH_OTHERS=$(RP6_LIB_PATH)/RP6base $(RP6_LIB_PATH)/RP6common
SRC += $(RP6_LIB_PATH)/RP6base/RP6RobotBaseLib.c
SRC += $(RP6_LIB_PATH)/RP6common/RP6uart.c
SRC += $(RP6_LIB_PATH)/RP6common/RP6I2CslaveTWI.c
Our makefiles contain some comment lines in between. Makefile's comments always
start with “#” and will be ignored in the make-process.

RP6's sample projects provide customized makefiles ready for use and you will not
need any modifications unless you are planning to include new C files into the pro-
ject's structure or if you start renaming files.

Start creating a makefile by specifying the program's file-name containing the Main-
Function in the “TARGET”-entry. You must specify the name without extension, so
please never add the “.c”-extension here! Unfortunately many other extensions will
have to be specified and it might be a good idea to study existing examples of make-
files and details in the comments!

The second entry “RP6_LIB_PATH” allows you to specify the pathname of the RP6Lib-
rary files. Please specify a relative path name, e.g. “../RP6lib” or “../../RP6lib” (in
which “../” is means “one directory level up”).

A third entry RP6_LIB_PATH_OTHERS is used to specify all other directories. We split-
ted the RP6Library in a number of subdirectories and you must name all of the re-
quired subdirectories for your project.

Finally you have to define all C files in the “SRC” entry (do not include any header files
with “.h”-extensions, which will be automatically searched for in all specified director-
ies!), that are used beneath the file containing the main-function. Additionally you will
have to specify all RP6Library's files you are using.

Now, what does $(RP6_LIB_PATH) mean? Well, that's the way to use variables in
makefiles! We already defined a “variable” named RP6_LIB_PATH. Once a variable has
been declared, the variable's content may be used by writing $(<Variable>) in the
succeeding text of the makefile. This useful feature will prevent a considerable
amount of typing effort in makefiles...

Usually you will not have to modify anything else in the RP6 makefiles. If you are
looking for additional information on this topic you may look at the detailed manual:
http://www.gnu.org/software/make/manual/

- 76 -

http://www.gnu.org/software/make/manual/

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.6. The RP6 function library (RP6Library)
The RP6 function library (abbr. RP6Library or RP6Lib) provides a great number of low-
level functions to control the RP6 hardware. With this library, you usually don't have
to care about all the hardware specific details of the Robot and the Microcontroller. Of
course, you do not need to read the 300 pages long datasheet of the ATMEGA32 Mi-
crocontroller in order to be able to write programs for the RP6. However, by reading
some important parts of the data sheet you may gain insight of how the RP6Library
works in detail.

In fact, we intentionally avoided perfect tuning for all RP6Library functions, in order to
leave some work for you! You are invited to add more functions and to optimize exist-
ing ones! Please consider the RP6Library as a good starting point, but not as an op-
timal solution.

This chapter discusses the most important functions and shows short examples. If you
are interested in further details, you can read the comments in the library files and
study the functions and the provided examples.

4.6.1. Initializing the microcontroller

void initRobotBase(void)
ALWAYS start the main function block by calling this function! It initialize the micro-
controller's hardware modules. The microcontroller may not be working properly if
your program does not start with this! Partially, the hardware modules are already ini-
tialized by the Bootloader, but not all.

Example:

1
2
3
4
5
6
7
8
9
10
11

#include "RP6RobotBaseLib.h"
int main(void)
{

initRobotBase(); // Initialization – ALWAYS CALL THIS FIRST!
// [...] Program code...

while(true); // Infinite loop
return 0;

}

Basically any RP6 Program should at least look like this. The infinite loop in
line 9 serves as a predefined end of the program. Skipping the infinite loop
may result in unexpected program behaviour!

Just to point out the idea of the infinite loop again: usually the infinite loop will be
used to execute your own program code. So you will delete the semicolon at line 9
and replace it with your own program block (surrounded by accolades). You can
define your own functions in the lines preceding the main function (at line 2 in this
case) and you may call your functions anywhere from the main loop.

- 77 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.6.2. UART Functions (serial interface)

A few of the RP6Library's functions have been used in the previous C crash course
already, such as the UART functions. These functions allow us to transfer text mes-
sages through the robot's serial interface to and from the PC (or to another microcon-
troller).

4.6.2.1. Transmitting data

void writeChar(char ch)
This function transmits a single 8-Bit ASCII character via the serial interface.

Usage is simple:

writeChar('A');
writeChar('B');
writeChar('C');
This would output “ABC”. The function can also transfer ASCII codes directly, e.g.:

writeChar(65);
writeChar(66);
writeChar(67);
This would also result in an output of “ABC”, because any ASCII character may be
represented by a number. The number 65 refers to the character 'A'. A special com-
munication software can also directly interpret the binary values if necessary.

You will frequently need something like:

writeChar('\n');
to start a new line in the terminal software.

void writeString(char *string)
and writeString_P(STRING)
These functions are important for debugging programs, as they allow transmitting any
text messages to the PC. Of course they may be useful for data transfers as well.

We will now have to explain the difference between writeString and writeString_P.
Working with writeString_P will cause the text strings to be stored in Flash-ROM
(Program Memory) only and of course we will have to read these strings back from
Flash-ROM for output. In contrast, for writeString the strings will get stored into RAM
and the Flash-ROM, which requires a double amount of memory. Please remember the
relatively small 2KB RAM! So, if you have to output fixed text strings you should
prefer using writeString_P. Of course for transferring dynamic data, which has to be
available in RAM anyway, writeString must be used.

Using the corresponding function is just as easy as using writeChar (please note the
double quotes instead of the apostrophe used for writeChar...):

writeString("ABCDEFG");
which will output “ABCDEFG”, but as mentioned above, this string will get stored in
ROM and will be loaded into RAM at startup.

writeString_P("ABCDEFG");
will equally output “ABCDEFG”, but it does not occupy RAM for the text!

- 78 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

void writeStringLength(char *data, uint8_t length, uint8_t offset);
Whenever you need to output text with a predefined length and/or offset, you can use
this function.

An example:

writeStringLength("ABCDEFG", 3, 1);
Output: “BCD”

writeStringLength("ABCDEFG", 2, 4);
Output: “EF”

This function however will occupy RAM for these strings as well and has been designed
for handling dynamic texts. This function is for example used by writeIntegerLength.

void writeInteger(int16_t number, uint8_t base);
This very useful function will output integer values as ASCII Text. From previous
examples we remember, that writeChar(65) outputs 'A' instead of the number 65...

Thus we need a function to output numbers as text strings.

Example:

writeInteger(139, DEC);
Output: “139”

writeInteger(25532, DEC);
Output: “25532”

The function allows you to output the complete range of 16bit signed integers
between -32768 up to 32767. Anyone planning to use numbers beyond these limits
will have to modify the function or alternatively write a special function from scratch!

Now you may wonder why we are using a second parameter “DEC”! The answer is
quite simple: this parameter is controlling the output format for this number. Of
course instead of DECimal (base 10) we may use several alternative output formats,
such as binary (BIN, base 2), octal (OCT, base 8) or hexadecimal (HEX, base 16).

Some examples:

writeInteger(255, DEC);
Output: “255”

writeInteger(255, HEX);
Output: “FF”

writeInteger(255, OCT);
Output: “377”

writeInteger(255, BIN);
Output: “11111111”

These functions are extremely useful for lots of applicatins. Especially to output in-
tegers in HEX or BIN format, as these formats allow you to directly see how the bits
are set in this integer.

- 79 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

void writeIntegerLength(uint16_t number, uint8_t base, uint8_t length);
This function is a variant for writeInteger, enabling you to specify the number of digits
(length) to be displayed. If the number's length is below the specified limit, the func-
tion will add leading zeros. If the number's length exceeds the specified limit, the
function will only display the trailing digits.

As usual we will demonstrate the function's behaviour by a few examples:

writeIntegerLength(2340, DEC, 5);
Output: “02340”

writeIntegerLength(2340, DEC, 8);
Output: “00002340”

writeIntegerLength(2340, DEC, 2);
Output: “40”

writeIntegerLength(254, BIN, 12);
Output: “000011111110”

4.6.2.2. Receiving data

The reception of Data through the serial interface is completely interrupt based. The
received data is written to a so called circular buffer automatically in the background.

Single received bytes/chars can be read out of the buffer with the function:

char readChar(void)
It returns the next available character in the Buffer and deletes it from the Buffer.

If the circular buffer is empty, 0 is returned. You should check for the buffer size with
this function:

uint8_t getBufferLength(void)
before calling readChar, otherwise you can't tell if a 0 is real data or not!

Several characters may be read with

uint8_t readChars(char *buf, uint8_t numberOfChars)
at once from the Buffer. You need to pass a pointer to an Array and the number of
chars to receive as parameters to this function. It returns the actual number of chars
that were written to the Array. This is useful if the buffer contains less chars than spe-
cified with numberOfChars paramter.

If the Buffer is completely full, any new received data will NOT overwrite data in the
buffer. Instead, a status Variable (uart_status) will be set to signal a buffer overflow
(UART_BUFFER_OVERFLOW). You should write your programs such that this can not
happen. Usually a buffer overflow occurs if the datarate gets to high or the program is
busy with something else for too long and does not read the data from the buffer. You
should avoid using long mSleep delays. If required, you can increase the size of the
circular buffer. Predefined size of the Buffer is 32 chars. In the file RP6uart.h, you can
change the definition UART_RECEIVE_BUFFER_SIZE.

A bigger example program can be found on the CD-ROM (Example_02_UART_02).

- 80 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.6.3. Delay and timer functions

Microcontroller programs often have to be delayed completely for some time, or need
to wait a period of time before a specific action is performed.

The RP6Library also provides functions for these purposes. It uses one of the
MEGA32's timers to achieve relatively accurate delay control, which is independent
from other program flow or interrupts which could disturb delay routines.

You will have to carefully decide where you can use these functions! Using these func-
tions along with automatic speed control and ACS (will be explained later) may cause
problems! If you need to use automatic speed control or ACS, please use very short
delays of less than 10 milliseconds only! Instead of blocking delays, you may prefer
the “stopwatch” functions instead, which will be discussed in the following section.

void sleep(uint8_t time)
This function will stop normal program execution for a predefined period of time. The
delay is specified with a resolution of 100µs (100µs = 0.1ms = 0.0001s, which is ex-
tremely short for human perception...). The use of an 8 bit sized variable allows us to
define delays up to 25500µs = 25.5ms. While the normal program is “sleeping”, inter-
rupts will still be processed immediately. This will only delay the normal program's ex-
ecution. As mentioned before, it uses a hardware timer and is not influenced too bad
by interrupt events.

Examples:

sleep(1); // 100µs delay
sleep(10); // 1ms delay
sleep(100); // 10ms delay
sleep(255); // 25.5ms delay

void mSleep(uint16_t time)
Whenever you need long delays, you may prefer mSleep, which allows to specify
delay period in milliseconds. The maximum delay period is 65535ms, or 65.5 seconds.

Examples:

mSleep(1); // 1ms delay
mSleep(100); // 100ms delay
mSleep(1000); // 1000ms = 1s delay
mSleep(10000); // 10 seconds delay
mSleep(65535); // 65.5 seconds delay

Stopwatches

The problem with these standard delay functions is, that they will stop the normal
program flow completely. This may be unacceptable, if only a specific part of the pro-
gram needs to wait for a period of time, whereas other parts are supposed to continue
with their tasks...

One of the main advantages in using hardware-timers, is independence from the nor-
mal program flow. With these timers, the RP6Library implements universal so-called
“Stopwatches”. The author has chosen this unusual title for similarity with ordinary
Stopwatches. These “Stopwatches” will simplify a great number of jobs. Usually cus-
tomised timer functions for each individual program would be required, but the

- 81 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=customised
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=customised

RP6 ROBOT SYSTEM - 4. Programming the RP6

RP6Library offers an universal module for general purpose usage.

Stopwatches allow you to handle a number of tasks “simultaneously” – at least this is
what you will see from your point of view outside of the microcontroller.

The RP6 provides eight 16bit Stopwatches (Stopwatch1 to Stopwatch8), which may be
started, stopped, set and read. As for the mSleep function we have chosen a resolu-
tion of one millisecond, which implies each of these timers will increment its counter in
intervals of 1ms. This method is not useable for very critical timing, as checking the
counter levels may not meet strict accuracy requirements.

The following example demonstrates the usage of the Stopwatches:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#include "RP6RobotBaseLib.h"
int main(void)
{

initRobotBase(); // Initialize the micro-controller
 writeString_P("\nRP6 Demo Program for Stopwatches\n");

writeString_P("__________________________________\n\n");
startStopwatch1(); // Start Stopwatch1
startStopwatch2(); // Start Stopwatch2

 uint8_t counter = 0;
 uint8_t runningLight = 1;
 // Main loop:

while(true)
{

 // A small LED running light:
if(getStopwatch1() > 100) // Did 100ms (= 0.1s) pass by?

 {
 setLEDs(runningLight); // Set the LEDs
 runningLight <<= 1; // Next LED (shift operation)
 if(runningLight > 32) // Last LED?
 runningLight = 1; // Yes, restart with LED1!
 setStopwatch1(0); // Reset Stopwatch1 to zero

 }
 // Output a counter level in the terminal:
 if(getStopwatch2() > 1000) // Did 1000ms (= 1s) pass by?

 {
 writeString_P("CNT:");
 writeInteger(counter, DEC); // Output counter level
 writeChar('\n');
 counter++; // Increment the counter
 setStopwatch2(0); // Reset Stopwatch2 to zero

 }
}
return 0;

}

The program is quite simple. Every second, it outputs the counter level via the serial
interface and increments the counter (lines 29 up to 36). At the same time we ex-
ecute a simple running light with the LEDs (lines 19 up to 26), with a refresh interval
of 100ms.

- 82 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

We are using Stopwatch1 and Stopwatch2 here, which get started at lines 9 and 10
respectively. Afterwards the Stopwatch counters are running. The infinite loop (at
lines 16 up to 37) constantly checks, whether the Stopwatches exceed a predefined
level. The if-condition in line 19 for example controls the running light and checks,
whether the stopwatch has been running for at least 100ms since the last reset to
zero. As soon as this gets true, the next LED will be activated and the counter will be
reset to zero (line 25) in order to wait for another 100ms. The same procedure is used
for the other counter, which in contrast checks for intervals of 1000ms, respectively 1
second.

You will find a slightly extended version of this program on the CD. It is just a small
example, but you may build rather complex systems with the Stopwatches and start
or stop them at certain events ...

The sample program on the CD also includes the running light and the counter (we
have even 3 counters in this program...), but they are implemented in separate func-
tions, which will be called from the infinite loop.

Seperating program code in functions will help you to keep an overview of complex
programs and simplifies reusing program modules by Copy&Paste. E.g. the running
light code can be used in other programs without big changes...

Several macros have been implemented for stopwatch control.

startStopwatchX()
starts stopwatch X. The command does not reset the Stopwatch and it will continue
incrementing from the last counter level.

Examples:

startStopwatch1();
startStopwatch2();

stopStopwatchX()
stops Stopwatch X.

Examples:

stopStopwatch2();
stopStopwatch1();

uint8_t isStopwatchXRunning()
returns if stopwatch X is running.

Example:

if(!isStopwatch2Running) {
// Stopwatch has been deactivated, so you may do sth. againt this...

}

- 83 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

setStopwatchX(uint16_t preset)
This macro sets the counter of stopwatch X to a given value.

Examples:

setStopwatch1(2324);
setStopwatch2(0);
setStopwatch3(2);
setStopwatch4(43456);
getStopwatchX()
This returns the counter level of stopwatch X.

Examples:

if(getStopwatch2() > 1000) { ... }
if(getStopwatch6() > 12324) { ... }

4.6.4. Status LEDs and Bumpers

void setLEDs(uint8_t leds)
This function allows you to control the 6 Status LEDs. Usage can be simplified with
binary constants instead of usual decimal numbers. Binary constants are formatted
like: 0bxxxxxx. The LEDs need 6 digits only.

Examples:

setLEDs(0b000000); // This deactivates all LEDs.
setLEDs(0b000001); // activates StatusLED1 and switches off all other LEDs.
setLEDs(0b000010); // StatusLED2
setLEDs(0b000100); // StatusLED3
setLEDs(0b001010); // StatusLED4 and StatusLED2
setLEDs(0b010111); // StatusLED5, StatusLED3, StatusLED2 and StatusLED1
setLEDs(0b100000); // StatusLED6
An alternative possibility the following:

statusLEDs.LED5 = true; // activate LED5 in the LED-register
statusLEDs.LED2 = false; // deactivate LED2 in the LED-register
updateStatusLEDs(); // commit the changes!
Here we activate StatusLED5 and deactivate StatusLED2, but we do not modify the
state of any other LED! This simplifies LED control from different program parts.

Attention: statusLEDs.LED5 = true; will NOT directly activate LED5! This command
will only set the corresponding bit in a variable! The LED5 will be illuminated after ex-
ecuting updateStatusLEDs();!

Two port-pins of the LEDs are additionally used to check the bumper status. In order
to read the bumpers, the controller will quickly switch the pin direction to input mode
and check if the connected microswitch is closed. We provide two functions for check-
ing the bumpers. The first function:

uint8_t getBumperLeft(void)
will read the left bumper status, whereas:

uint8_t getBumperRight(void)
will read the right bumper switch.

- 84 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

The Microcontroller executes these functions very fast and you will not see that the
LEDs turn off, although the Pin is set to input for a few instruction cycles. Of course
you should not call these functions frequently without a delay of a few ms in between.

The LED Portpins should be controlled with the predefined functions only! There are
resistors to protect the bumper ports, but if the pins are set to low level output AND a
bumper switch is closed at the same time, the port terminal will conduct a bit more
current. Such unecessary currents should be avoided of course (the AVRs have Tri-
state outputs – to turn the LED off, they are set to floating)

Example:

if(getBumperLeft() && getBumperRight()) // Both Bumpers...
escape(); // Define your own function here, e.g. drive back and rotate

else if(getBumperLeft()) // Left...
escapeLeft(); // drive back again and turn to the right.

else if(getBumperRight()) // Right...
escapeRight(); // drive back again and turn to the left.

mSleep(50); // Check bumpers at a rate of 20 times pro second (20Hz)...
Pressing the bumpers will illuminate the LEDs 6 and 3. This is intentionally and cannot
be avoided. However, the bumper switches are usually not activated to often, so this
does not bother us too much.

You can connect other sensors with digital output to the four remain-
ing LEDs. Switching loads like additional LEDs or Motors on and off
via Transistors is possible, too. The only thing missing are apropriate
functions that control the four ports, but you can take a look at the
existing functions for the LEDs and Bumpers...

Attention: In order to protect the microcontroller's ports, always in-
sert at least 470 Ohm resistors between sensors/actors and ports for
current limiting!

The RP6 allows you to deactivate the LEDs during the boot phase.
This is useful to avoid port activity while booting is in progress and if
there are other devices connected to the LED portpins.

The first byte in the internal EEPROM (addressed by 0) is reserved to
control the LED modes, so please do not use this byte for your own
programs (overriding this byte will not disturb anything else, but you
may wonder why LEDs are no longer illuminated after turning on the
RP6...) !

There are a lot of things on the RP6 that have to be evaluated constantly in order to
make them work correctly. For instance, the ACS needs to transmit IR pulses in spe-
cific intervals and check for reception. We can not use automated interrupt functions
for this, as the interrrupt service routines need to be as fast as possible. Thus you
have to call several functions from the main program frequently. In a well designed
program, these tasks will act like if they are just running in background.

We will discuss all these functions for ACS and similar later in this chapter and provide
more details on this. However we had to anticipate a few details in order to make it
easier for you to understand how the bumper functions work and why they are imple-
mented like this!

- 85 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Now, as we are performing background tasks anyway, we can run some other (smal-
ler) tasks as well along with the bigger things – such as bumper evaluation. This is a
simple and fast task which you would usually perform in the main loop anyway.

To automatically check the bumpers you have to call this function:

void task_Bumpers(void)
frequently from the main loop (s. a. chapter about driving functions, in which we will
discuss this in detail). This function will automatically check the bumper sensors at in-
tervals of 50ms (pressed or not) and writes their current state into the variables:

bumper_left and bumper_right
You may use these variables anywhere in the program e.g. in if-conditions, loops etc.,
or assign them to other variables.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include "RP6RobotBaseLib.h"
int main(void)

initRobotBase(); // Initialize the Microcontroller
 setLEDs(0b001001); // Turn LEDs 1 and 4 on (both green)

while(true)
{

 // Set the LEDs depending on which
 // bumpers are pressed down:
 statusLEDs.LED6 = bumper_left; // Left bumper pressed
 statusLEDs.LED4 = !bumper_left; // Left bumper released
 statusLEDs.LED3 = bumper_right; // Right bumper pressed
 statusLEDs.LED1 = !bumper_right; // Right bumper released
 // Both bumpers pressed down:

 statusLEDs.LED2 = (bumper_left && bumper_right);
 statusLEDs.LED5 = statusLEDs.LED2;
 updateStatusLEDs(); // update LEDs...

 // Check bumper status:
task_Bumpers(); // Frequently call this from the main loop!

}
return 0;

}

The sample program is using the Status LEDs to show the bumper status. Pressing
down the left bumper will turn LED6 on and turn LED4 off. In contrast releasing the
left bumper will turn LED6 off and turn LED4 on. Pressing down the left bumper turns
LED6 on anyway, but here we want to demonstrate the LED usage in general and you
could use anything else to control the LEDs like shown above!
The example works similar for the right bumper with LED3 and LED1. Pressing down
both bumper sensors will turn LED2 and LED5 on.

Equipped with such an automatic check for the Bumpers, it was self-evident to create
something that calls a self defined function automatically everytime the state of the
bumpers changes. Usually the Bumpers will be hit very rarely only and it makes sense
to check this in the main program only if necessary.

- 86 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

C allows us to define pointers to functions and call these functions without pre-defin-
ing the function in the library. Usually a function needs to be defined in our Library at
the time of compilation in order to be callable.

This method allows us to use self-defined functions as so-called “Event Handlers”.
Pressing down a bumper will automatically result in calling a predefined dedicated
function (within 50ms). This special function must be registered as an Event Handler
and will have to provide a specific signature: the function must not return a value and
has no parameter (both return value and parameter must be “void”). Therefore the
function's signature will have to look like: void bumpersStateChanged(void). For exam-
ple you may register the Event Handler at the very beginning of the main function.
Registering the Event Handler can be done with the following function:

void BUMPERS_setStateChangedHandler(void (*bumperHandler)(void))
You do not have to exactly understand this command – to make a long story short
this function expects a pointer to a function as parameter...

We will explain this in a simple example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include "RP6RobotBaseLib.h"
// Our "Event Handler" function for the bumpers.
// This function will be called automatically by the RP6Library:
void bumpersStateChanged(void)
{

writeString_P("\nBumper status changed:\n");
if(bumper_left)

writeString_P(" - Left bumper pressed down!\n");
else

writeString_P(" - Left bumper released!\n");
if(bumper_right)

writeString_P(" - Right bumper pressed down!\n");
else

writeString_P(" - Right bumper released\n");
}
int main(void)
{

initRobotBase();
 // Register the Event Handler:

BUMPERS_setStateChangedHandler(bumpersStateChanged);
while(true)
{
 task_Bumpers(); // Automatically check bumpers at 50ms intervals
}
return 0;

}

- 87 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=short
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=story
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=long
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=a
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=make
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=to

RP6 ROBOT SYSTEM - 4. Programming the RP6

The program will react on alterations of the bumper status once-only by outputting
the current status of both bumpers. For example, if you press down the right bumper,
the output would be:

Bumper Status has changed:
 - Left bumper has not been activated.
 - Right bumper has been activated!
Pressing down both bumper sensors will result in:

Bumper Status has changed:
 - Left bumper has been activated!
 - Right bumper has been activated!
You will hardly ever manage to activate both bumpers simultaneously and you might
see an additional message in which only one of the bumpers is pressed down. If you
press them down fast enough, it should show only one message. This is because of
the 50ms interval...

You may notice that the example program never directly calls the bumpersStateChanged
function! The RP6Library manages this automatically at each bumper status alteration
from the task_Bumpers function. In fact, task_Bumpers first does not know our
bumpersStateChanged function and must be calling this function by using a pointer,
which will be set up properly in line 24.

Of course the Event Handler may be extended beyond text outputs – e.g. think of
stopping the robot and driving back / rotating. However, such things should not be
peformed in the Event Handler itself, but elsewhere in the program. You might set a
command variable(s) in the Event Handler, which is then checked in the main pro-
gram to identify which movement should be performed! Always keep Event Handlers
as short as possible!

You can use all RP6Library functions in Event Handlers, but you must be careful with
the “rotate” and “move” functions, which are to be discussed in later chapters! Do
NEVER use the blocking mode of these functions in event handlers (repeatedly activ-
ating the bumpers will not quite work as expected ;-))!

The basic idea of Event Handlers is used by a number of other functions, too. For ex-
ample the ACS – which is very similar to use by calling an Event Handler for each
status alteration of the object sensors.

We also use an Event Handler for receiving RC5 Codes from remote controls. Any re-
ception of RC5 Coded signals initiates a call to a corresponding Event Handler func-
tion.

There is no need to use Event Handlers for these jobs – of course you may simply use
if-conditions to check for changes, but the Event Handlers simplify program design.
Consider it a matter of of taste.

By the way: the CD provides you with a number of detailed sample programs on this
topic!

- 88 -

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=taste
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=of

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.6.5. Read ADC values (Battery, Motorcurrent and Light sensors)

There are a lot of sensors connected to the ADC (Analog to Digital Converter), as de-
scribed in chapter 2. Of course, the RP6Library provides a function to read the meas-
ured ADC values:

uint16_t readADC(uint8_t channel)
This function returns a 10 Bit value (0...1023) and requires a 16 Bit variable for
sensor values.

The following channels can be read:

ADC_BAT --> Battery voltage sensor
ADC_MCURRENT_R --> Motorcurrent sensor for the right motor
ADC_MCURRENT_L --> Motorcurrent sensor for the left motor
ADC_LS_L --> Left light sensor
ADC_LS_R --> Right light sensor
ADC_ADC0 --> Free ADC channel for your own sensor devices
ADC_ADC1 --> Free ADC channel for your own sensor devices

Hint: the two connectors for the free ADC channels are not popu-
lated. You may solder connectors with standard 2.54mm grid and
maybe additionally insert two 100nF capacitors and a large 470µF
Elco, just in case your sensor circuitry required high peak current,
like Sharp IR-distance-sensor do...

This requires some soldering-experience! If you are unexperienced,
it may be a better idea to go for an extension module!

Examples:

uint16_t ubat = readADC(ADC_BAT);
uint16_t iMotorR = readADC(ADC_MCURRENT_R);
uint16_t iMotorL = readADC(ADC_MCURRENT_L);
uint16_t lsL = readADC(ADC_LS_L);
uint16_t lsR = readADC(ADC_LS_R);
uint16_t free_adc0 = readADC(ADC_ADC0);
uint16_t free_adc1 = readADC(ADC_ADC1);
if(ubat < 580) writeString_P("Warning! Low battery level!");
Basically the 5V supply is used as reference voltage, but the function could be modi-
fied such that the internal ATMEGA32's 2.56V reference voltage is used instead (see
the MEGA32 data sheet). The standard RP6 sensors do not require this usually.

It makes sense to perform several ADC measurements subsequently, to store the res-
ults in an array and to calculate the average and/or Minimum/Maximum value before
processing the ADC output any further.

Processing several values can reduce measurement errors. As an example where “av-
eraging” methods are required, we may consider the battery voltage measurement.
The Battery voltage will vary a lot under heavy load, especially with alternating load
conditions like caused by the motors.

- 89 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

In analogy to the bumper sensors, we may automatically perform ADC measurements
and simplify the main program by using a comfortable function:

void task_ADC(void)
which will shorten the time required to evaluate all ADC channels in a program. Call-
ing this function will subsequentially read all ADC channels in “background
mode” (whenever there is some spare time, the measurements are started / read
out...) and store the results in predefined variables.

The ADC requires some time for each measurement and the readADC function would
block the program flow during that time. The measurement itself does not require any
program action, so we can do something else during this time (the ADC is a hardware
module)

Individual channel measurements are stored in the following 16Bit Variables, which
can be used any time and anywhere in your programs:

ADC_BAT: adcBat
ADC_MCURRENT_L: adcMotorCurrentLeft
ADC_MCURRENT_R: adcMotorCurrentRight
ADC_LS_L: adcLSL
ADC_LS_R: adcLSR
ADC_ADC0: adc0
ADC_ADC1: adc1
As soon as you have started using the task_ADC() function, you must use these vari-
ables instead of the readADC-function!

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include "RP6RobotBaseLib.h"
int main(void)
{

initRobotBase();
startStopwatch1();
writeString_P("\n\nJust a sample ADC evaluation program...\n\n");
while(true)
{

if(getStopwatch1() > 300) // Every 300ms...
{

 writeString_P("\nADC Left-sided light-sensor: ");
writeInteger(adcLSL, DEC);

 writeString_P("\nADC Right-sided light-sensor: ");
writeInteger(adcLSL, DEC);
writeString_P("\nADC Battery: ");
writeInteger(adcBat, DEC);
writeChar('\n');
if(adcBat < 600)

writeString_P("Warning! Low battery level!\n");
setStopwatch1(0); // Reset Stopwatch1 to zero

}
task_ADC(); // ADC evaluation – this has to be called

} // permanently from the main loop!
return 0; // But then you can NOT use readADC anymore!

}

This program will output measurement values of both light sensors and the battery

- 90 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

voltage at intervals of 300ms. The program will issue a warning as soon as the battery
voltage drops below a level of approximately 6V.

4.6.6. ACS – Anti Collision System

In contrast to the CCRP5, which used a small co-processor, the Anti Collision System
of the RP6 has been directly implemented on the MEGA32. This architecture needs
some more programming effort, but also allows custom modifications and adapta-
tions. The RP5 design did not allow any modifications of the co-processor's software at
all...

The ACS detection range, respectively transmitting power of both IR-LEDs may be
controlled by the following functions:

void setACSPwrOff(void) --> Deactivate the ACS IR-LEDs
void setACSPwrLow(void) --> Short range
void setACSPwrMed(void) --> Medium range
void setACSPwrHigh(void) --> Long range
As the ACS is nearly completely implemented in software, it is required to frequently
call the following function within the main loop:

void task_ACS(void)
This function completely controls the ACS. Further processing can be done in a similar
procedure as it has been demonstrated for the bumpers.

The RP6Lib provides two variables:

obstacle_left and obstacle_right
each of which will be set to true as soon as the ACS detects an obstacle. If both vari-
ables have been set to true, the obstacle will be found located directly in front of the
robot.

You may optionally use an Event Handler for the ACS.

void ACS_setStateChangedHandler(void (*acsHandler)(void))
This function registers the Event Handler, which must have the following signature:
void acsStateChanged(void)
However, you may name the function whatever you like.

The next sample program will demonstrate how to use this. We start by registering
the Event Handler (line 44), then activate all sensors including the IR Receiver (line
46 – of course it does not work without this!) and setup the transmitting power for the
ACS IR LEDs (line 47). The main loop frequently calls the function task_ACS().

Further evaluation will be performed automatically. The acsStateChanged function
gets called as soon as the ACS changes its state, which happens if an obstacle is de-
tected or if it disappears again. The program will display the current ACS state with
text messages in the terminal and with the LEDs.

- 91 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

#include "RP6RobotBaseLib.h"
void acsStateChanged(void)
{

writeString_P("The ACS-status has changed! L: ");
if(obstacle_left) // Obstacle on the left

writeChar('o');
else

writeChar(' ');
writeString_P(" | R: ");
if(obstacle_right) // Obstacle on the right

writeChar('o');
else

writeChar(' ');
if(obstacle_left && obstacle_right) // Obstacle in the middle?

 writeString_P(" Amidships!");
writeChar('\n');

 statusLEDs.LED6 = obstacle_left && obstacle_right; // In the middle?
 statusLEDs.LED3 = statusLEDs.LED6;

statusLEDs.LED5 = obstacle_left; // Obstacle on the left
statusLEDs.LED4 = (!obstacle_left); // LED5 inverted!
statusLEDs.LED2 = obstacle_right; // Hindernis on the right
statusLEDs.LED1 = (!obstacle_right); // LED2 inverted!
updateStatusLEDs();

}
int main(void)
{

initRobotBase();
 writeString_P("\nRP6 ACS - Testprogram\n");

writeString_P("_____________________\n\n");
setLEDs(0b111111);
mSleep(1000);
setLEDs(0b001001);
// Register the ACS Event Handler:
ACS_setStateChangedHandler(acsStateChanged);
powerON(); // Activate the IR receiver (incl. encoders etc.)
setACSPwrMed(); // set the ACS medium transmit power.
while(true)
{

task_ACS(); // Frequently call the task_ACS function!
}
return 0;

}

This sample program also demonstrates once again how to activate and deactivate in-
dividual LEDs.

You should connect the Robot to the PC and look at the output in the terminal and

- 92 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

also watch the LEDs. And then just move your hand or an object directly in front of
the robot!

Several sources of interference are known to affect the ACS! Some
types of fluorescent lamps and similar light sources may virtually
blind the robot or at least decrease sensitivity. If you encounter such
problems you may start by deactivating all possible interfering
sources of light. (Hint: eventually you may have put the robot dir-
ectly in front of a Flatscreen, which also must be considered as a po-
tential source for problems as most of the Flatscreens use a fluores-
cent lamp as backlight...).
Of course the detection range heavily depends on the obstacle's sur-
face. Obviously, black surfaces will not reflect the same amount of
light as bright white surfaces. The ACS may even ignore some of the
dark colored objects!
In critical situations we might prefer to support the ACS by ultrason-
ic sensors or by improved IR sensors.

Before allowing the robot to cruise around in a room you should at least perform a few
simple tests with the ACS by testing detection capability of several different objects.
Especially you could try to find out which objects FAIL to be detected properly. This
test will allow you to remove such obstacles before operating the robot... but com-
pared to the predecessor CCRP5, a failing ACS-system will not cause problems, as the
bumper will prevent damages to the IR LEDs!

4.6.7. IRCOMM and RC5 Functions

The IR receiver allows the RP6 to receive IR-
signals from standard TV/Hifi remote controls,
but this is restricted to remote controls using
the RC5 code! Most of the universal remote
controls (see fig.) may be programmed to this
code – please read the manual of your remote
control to set up the RC5 code. If RC5-code is
missing in the code table, you may simply test
several different manufacturers.

The ACS will ignore remote controls transmit-
ting RC5 signals and these will usually not in-

terfere with the ACS obstacle detection. The system will still be able to detect
obstacles, but may react slower as operation is restricted to pauses between RC5-
transmits. If a remote control does not use RC5, the ACS could get malfunctional.

A suitable software would allow the RP6 to be controlled by an IR remote control.

And the IRCOMM may be used to transmit IR Signals as well. Both transmitting diodes
at the robot's front panel are pointing upwards to the ceiling. Reflections from the ceil-
ing and other objects or direct line-of-sight, allow communication with other robots or
a base station.

Communication is relatively slow (transmitting a data packet takes approximately
20ms plus a short pause), but allows you to transmit simple commands and single
measurement values. Transmitting range is restricted to distances of about 2 up to 4
meters inside one room (depending on lighting conditions, obstacles, ceiling surfaces

- 93 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

and robot's expansion boards mounted on the top). You will be able to extend the
communication range by adding some more IR LEDs (for example controlled by anoth-
er MOSFET with a large capacitor and a small series resistor).

Synchronisation to the ACS operation is controlled by the task_ACS() function, which
must be called frequently from the main-loop in order to handle reception of IR-sig-
nals – and additionally for managing the IRCOMM transfers!

RC5-data packets consist of a device address, a key code and a toggle bit. The 5 Bit
device address tells which device is controlled by the remote control. Such as a televi-
sion, a video recorder, a Hi-Fi system, etc. For our application, the device address
may also be used to address several individual robots. The 6 Bit Key code corresponds
to the pressed key on the remote control, but may allow us to transfer any other data
as well. This provides only 6 bits per transfer, but you can transmit 8 Bit Data in two
seperate transfers or divert 2 bits of the device address and/or the toggle bit from
their intended use.

Standard remote controls use the toggle bit to identify a continously hold down or re-
peatedly pressed key. However we may use the toggle bit for any other functionality
for communication between robots.

RC5 data packets can be transmitted with the following function:

void IRCOMM_sendRC5(uint8_t adr, uint8_t data)
in which adr corresponds to the device address and data to the Key code respectively
the data value. The parameter adr allows you to set the Toggle Bit at the most signi-
ficant bit (MSB) by applying the constant TOGGLEBIT in the following way:

IRCOMM_sendRC5(12 | TOGGLEBIT, 40);
This command will transmit an RC5 data packet to the device with address 12, activ-
ated Toggle Bit and 40 as data value.

IRCOMM_sendRC5(12, 40);
This is what it looks like without activated Toggle Bit.

In analogy to the bumpers and ACS, reception of RC5 data can be managed by an
Event Handler. As soon as a new RC5 packet has been received, an Event Handler will
be called automatically by the task_ACS() function. For examle this allows you write
a program that lets the robot turn to the left if it receives the key code 4 and turn to
the right at a key code of 6...

One of the example programs provides this functionality: full motion control by using
an IR remote control.

The prescribed signature for the Event Handler must correspond to:

void receiveRC5Data(RC5data_t rc5data)
but of course you may freely name the function!

void IRCOMM_setRC5DataReadyHandler(void (*rc5Handler)(RC5data_t))
This function allows you to register a predefined Event Handler, e.g. by:

IRCOMM_setRC5DataReadyHandler(receiveRC5Data);
After this, the specified function will be called on every valid RC5 code reception.

- 94 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

By the way: RC5data_t is a special pre-defined datatype, containing the RC5 Device
Address, the Toggle Bit the Key code (respectively a data value). You may use these
data just like ordinary variables with the following identifiers:

rc5data.device, rc5data.toggle_bit, rc5data.key_code
The CD provides a sample program that shows how to use this.

Attention: Never activate the IRCOMM output pin permanently! The
IR LEDs and MOSFET driver circuit has been designed for pulsed op-
eration and is allowed to be operated at pulse periods of about one
millisecond only! Otherwise current consumption gets too high with
fully charged accumulators. Do not modify any of the IRCOMM func-
tions if you are unexperienced with such things. Especially the Inter-
rupt Routine for controlling these IR devices must not be modified!

4.6.8. Power saving functions

In previous chapters we have been using powerON(), but we did not describe its func-
tionality. The RP6 has can save a bit power by deactivating the ACS, the encoder sys-
tem, the motor current sensors and the PowerON LED. It saves roughly 10mA to de-
activate these sensors.

To turn the sensors ON you may call the macro:

powerON()
and to save some power and turn the sensors off you can call:

powerOFF()
Both macros will only set an I/O Pin.

Before using the ACS, IRCOMM or motor control, the powerON()
macro has to be executed! Otherwise the corresponding sensor cir-
cuits will not be supplied with power. In order to operate correctly,
the motor control routines require the encoder signals and current
sensors feedback.
Whenever you forget to call powerON(), the motors will be shutdown
immeadiately after a short start attempt. To indicate this error con-
dition, the four red status LEDs will start flashing.

4.6.9. Drive system functions

The RP6Library provides comfortable functions for controlling the robot's drive system.
Some functions will automatically control the motor speed by encoder feedback, check
the motor current, automatically move certain distances and perform many other
tasks. These features are very comfortable, but – just like with the other systems of
the Robot - we need to consider some special things in order to use them.

The actual development status cannot be considered as optimal. There is lots of room
for improvements!

void task_motionControl(void)
We will have to call the task_motionControl function frequently from the main pro-

- 95 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

gram's loop – otherwise the automatic control will not work! Frequently calling from
the main program simply implies to call this function at each and every main loop
cycle. Calling the function at intervals of 10 up to 50 milliseconds will be sufficient, but
its better to call the function at considerably shorter intervals. Calling the function
more frequently will not cause any problems, as a hardware timer is controlling the
timing. For the same reason, we may call the function at changing interval periods,
e.g. ranging from 1ms up to 10ms. Calling the function very frequently will not cost to
much processing time, as the function will only be executed completely in predefined
minimum intervals.

If the function is used correctly, it will automatically regulate the motor's rotational
velocity to the desired value.

Speed control is achieved by determining deviations in every measurement cycle and
summing them up (so-called integrating regulator). This error value is used to adjust
the motor voltages via the Microcontroller's PWM-Modules. If the speed is too low,
the error values will be positive and motor voltage has to be increased at an appropri-
ate rate. If the speed is too high, the voltage must be reduced. This method will
quickly adjust the RP6's speed to a relatively constant PWM value (in which minor de-
viations are quite normal). Speed control allows stabilizing speed independently of
battery voltage, load (weight, surface conditions, slope, etc.) and manufacturing toler-
ances. If we would try to drive a robot at a fixed PWM value, the robot's speed would
be extremely dependent on effective motor load and battery voltage. Additionally,
manufacturing tolerances would result in different speeds for the left and right motor.

The speed control routine is also responsible for reversing the motor turning direction,
as any reversing operation at 15cm/s might considerably accelerate wear out of the
motors and gears. If a motor direction change has to be performed, the robot's speed
will automatically be reduced to zero, followed by the direction change and sub-
sequent acceleration up to the former setpoint speed.

In addition to speed and direction control the system also monitors the current con-
sumption of the motors. It will automatically stop the motors in over current condi-
tions. These safety precaution prevents motor overload and overheating, which may
damage the motors over time.

If three overcurrent events occur within 20 seconds, the protection system will per-
form an emergency shutdown and start flashing the four Status LEDs. Then the Robot
has to be resetted in order to continue operation.

Additionally the system monitors failing encoders or motors (which may happen if
you've tinkered too much with it...). Whenever this happens, the motionControl func-
tion would ramp the PWM value up to maximum and the robot could get out of control
due to this... which of course must be considered as a quite undesirable experience!
Anyway, the robot will be halted completely in this case.

Just to keep this concise, we also included the functions for driving specific distances
and rotating specific angles in the motionControl function.

As you can see, the function is very important for the automatic motor control. As a
matter of fact, the motionControl function itself does not have any parameters like
e.g. the desired speed. Operating parameters need to be set through other functions,
which will be described in detail now.

- 96 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

void moveAtSpeed(uint8_t desired_speed_left, uint8_t desired_speed_right)
This function adjusts the setpoint speed. Both parameters will define the desired
speed for the left and right motor. Frequently calling the motionControl function (as
described in the previous chapter) results in regulation of the speed to the setpoint
values. Setting these values to zero, initiates a slowdown, followed by complete deac-
tivation of the PWM modules.

getDesSpeedLeft() and getDesSpeedRight()
These macros allow you to read the actual setpoint speed values.

Usage is quite simple as you can see in the following example program:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#include "RP6RobotBaseLib.h"
int main(void)
{

initRobotBase(); // Initialize the Microcontroller
powerON(); // Activate Encoders & Motor current sensors (IMPORTANT!)

moveAtSpeed(70,70); // set desired speed
while(true)
{

 // Frequently call the motionControl function from the
 // main loop – it will adjust both motor speeds:

task_motionControl();
 task_ADC(); // has to be called for Motor current sensors!

}
return 0;

}

... and now RP6 will start moving directly! Of course the robot will not react on any
obstacles and is moving forwards only! The system will only try to regulate the speed
level and automatically adjust motor power – e.g. in ascending or descending a ramp.

BE CAREFUL: This behaviour may be very dangerous for your
own fingers – Take care to keep your fingers away from the cater-
pillar tracks and wheels, and keep clear of the area between printed
circuit board and the caterpillar tracks! There is a considerable risk
of injury! As already explained, the motor power will automatically
be increased and the motors are quite powerful!

Speed parameters for the moveAtSpeed function is not specified in cm/s or equivalent
units, but in a rotational Velocity unit.

After all, the robot's speed depends on the real circumference of caterpillar tracks and
wheels or in other words the encoder's resolution. There are considerable tolerances
from 0.23 up to 0.25mm for each encoder segment. Thus the Encoder resolution has
to be measured!

The system will measure the rotational speed at intervals of 200ms which is equival-
ent to a rate of 5x pro second. So the unit is “Encoder Segments per 200ms”. A value
of 70 as it has been used in the example on the previous page has to be interpreted

- 97 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

as 70⋅5=350 counted encoder-segments per second (corresponding to ca. 8 up to
8.7 cm/s – depending on the real encoder resolution). The minimal controllable rota-
tional speed is around 10⋅5=50 and the maximal rotational speed is approximately
200⋅5=1000 . Chapter 2 already mentioned the reasons for this speed limit, but we

even recommend to limit it to a value of 160 for continous movements and use 200
only for short times!

getLeftSpeed() and getRightSpeed()
These macros allow you to read the measured rotational speed. They will return val-
ues with the same unit as described above.

void changeDirection(uint8_t dir)
This function will set the motors rotational direction. As already discussed, first the ro-
bobt will decelerate, then change the direction and finally accelerate to the previous
setpoint speed.

The following parameters are supported:

FWD – ForWarDs
BWD – BackWarDs
LEFT – rotate left
RIGHT – rotate right
The macro:

getDirection()
allows you to read the current direction.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include "RP6RobotBaseLib.h"
int main(void)
{
 initRobotBase(); // Initialize the Microcontroller
 powerON(); // Activate Encoders and Motor current sensors!

 moveAtSpeed(60,60); // Set desired speed
 startStopwatch1(); // Start Stopwatch1
 while(true)
 {
 if(getStopwatch1() > 4000) // Have 4000ms (= 4s) passed by?

 {
 // Change moving direction:

if(getDirection() == FWD) // If we are driving forwards,
 changeDirection(BWD); // then set direction to backwards!
else if(getDirection() == BWD) // If we are driving backwards,
 changeDirection(FWD); // then set direction to forwards!

 setStopwatch1(0); // Reset Stopwatch1
 }
 task_motionControl(); // Automatic motion control

 task_ADC(); // has to be called for the current sensors.
 }
 return 0;
}

- 98 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

In this example program, the RP6 will first drive forwards – which is the default set-
ting for movements after a reset. We are using one of the stopwatches to wait 4
seconds and then the direction is reversed. In line 16 and 18 the current rotational
direction is determined and changed accordingly. This repeats at intervals of 4
seconds, which will cause the robot to drive forwards and backwards the whole time.

Clearly the robot will still ignore any obstacles!

Its not that easy to drive specific distances with the functions discussed until now.
There are two special functions for this purpose:

void move(uint8_t desired_speed, uint8_t dir, uint16_t distance,
 uint8_t blocking)
The move-function allows the Robot to drive a specific distance. You need to pass de-
sired speed, direction (FWD or BWD) and distance in encoder counts.

The macro:

DIST_MM(DISTANCE)
is helpful for converting a distance from millimetres to encoder counts. Of course you
will need to calibrate the encoder resolution before (see appendix). The sample pro-
gram further down below shows how to use this.

The robot will try to drive the desired distance as accurately as possible. The motion-
Control function starts by accelerating to the setpoint speed and slows down the robot
shortly before the distance is reached to avoid overshooting. Accuracy is around 5mm,
which usually may be considered to be all right.

The function does not support driving very short distances under 5cm, but this can be
improved, of course!

The trailing parameter, named “blocking” is a special feature, which needs a detailed
description.

Usually the function will only set a few variables and immediately returns to the pro-
gram. The robot is then controlled by the motionControl-function “in background”.
This is useful for performing other jobs such as avoiding obstacles. However, if the ro-
bot just has to follow a predefined geometric figure, you can change this with the
blocking parameter.

Setting the parameter “true” (this means 1), the function will call the motionControl
function in a loop until the predefined distance has been reached. The program does
not leave this function – instead it will “block” the normal program flow for the re-
quired time.

Setting the parameter “false” will cause the function to perform as described previ-
ously. It will immediately return after it set the command “start to drive a predefined
distance”. If you call other functions, which set the speed or give other movement
commands, the program could behave incorrectly. You will have to either wait for the
original movement command to finish, or alternatively you can abort the command.

- 99 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

The function:

uint8_t isMovementComplete(void)
can be used to check if movement-commands are completed. If there are unfinished
movement-commands, the return value will be “false”.

Whenever a move-command has to be aborted, e.g. at detection of an obstacle, you
can terminate all movements by calling:

void stop(void)
which will stop all movements.

It would be already possible to use the move function for rotating by simply setting
the direction parameter to LEFT or RIGHT instead of FWD or BWD and specifying a
suitable distance value corresponding to an angle. This is a rather clumsy method and
does not perform very well. For this reason we provided a dedicated function for rota-
tion on the spot:

void rotate(uint8_t desired_speed, uint8_t dir, uint16_t angle,
uint8_t blocking)

This function behaves just like the “move”-command, the only difference is that you
need to specify an angle instead of a distance. The blocking parameter can be used
with this function, too.

The following example program shows how to use both functions:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include "RP6RobotBaseLib.h"
int main(void)
{

initRobotBase();
setLEDs(0b111111);
mSleep(1500);
powerON(); // Activate encoders and motor current sensors!
while(true)
{

setLEDs(0b100100);
move(60, FWD, DIST_MM(300), true); // Move 30cm forward
setLEDs(0b100000);
rotate(50, LEFT, 180, true); // Rotate 180° to the left
setLEDs(0b100100);
move(60, FWD, DIST_MM(300), true); // Move 30cm forward
setLEDs(0b000100);
rotate(50, RIGHT, 180, true); // Rotate 180° to the right

}
return 0;

}

The Robot will move 30cm forward, rotate 180° to the left, move 30cm backwards,
rotate 180° to the right and start from the beginning. If you would set all of the block-
ing parameters to false, the program would not work at all. The main loop does not
call the task_motionControl function and all movement function calls are in one se-
quence. Changing only one blocking parameter to false, the program will not work as
intended anymore. One of the movement phases will be skipped completely then.

- 100 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

In order to perform such sequential processes, we always have to set the blocking-
parameter to true!
You may even perform rudimentary reaction on obstacles with the blocking-paramet-
ers set to true – by using event handlera. These event handlers will be called anyway,
no matter if the blocking parameter is set true! However this method may fail in more
complex situations.

In general, for avoiding obstacles, interpreting master controller commands and for
similar processes we recommend to use the non-blocking mode and set the blocking
parameter to false.
As we mentioned earlier in this chapter, this mode allows the move/rotate-functions
to control the robot's movement independently of other program flow.

You will find a few detailed examples to this topic on the CD.

4.6.10. task_RP6System()

In the last few chapters we have learned, that it is essential to frequently call four
functions within the main loop for correct operation of ACS/IRCOMM, motion control,
bumpers and ADC evaluation in the background. Just to simplify this and to help
keeping a better overview of your program, the RP6Library provides the following
function:

void task_RP6System(void)
which will sequentially call the functions:

task_ADC();
task_ACS();
task_bumpers();
task_motionControl();

Most of the sample programs on the CD will only use this function – we will hardly
need one of the other functions directly.

- 101 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.6.11. I²C Bus Functions

At the end of this chapter we will focus on the I²C-Bus functions, which can be used
for communication with other Microcontrollers and expansion modules.

There are two versions of I²C-Bus functions – one for slave and another one for mas-
ter mode.

Attention: You can not use both versions simultaneously!

You may include one of both versions only and you need to make sure that they are
listed in the makefile. Apropriate entries have been added to the Makefiles of the ex-
ample programs already – however they have been outcommented in most of the ex-
amples. Once again: use only one of these entries! Otherwise the compiler will issue
an error message (this is because the TWI Interrupt Vector would be defined twice if
you would include both versions).

4.6.11.1. I²C Slave

On the robot base unit, the slave mode is most important, because it is a very com-
mon task to add another Microcontroller to the Robot in order to control it. There is an
Example program, which allows you to access nearly all functions of the robot base
unit through the I²C Bus (RP6Base_I2CSlave).

Basically both, master mode and slave mode use interrupts. It is not easy to imple-
ment I2C Slave mode in pure Software (at least not with reasonable effort). The mas-
ter mode could be easily implemented in Software, but in order to keep the structure
of both similar, we also used interrupts this mode. Another advantage is, that the
master mode transmissions can be performed in background to save some time.

void I2CTWI_initSlave(uint8_t address)
This function will initialize the Microcontroller's TWI module as I²C Slave and allows
you to define the address as parameter. In the address you can simultaneously
define, whether the controller should react on so-called “General Calls” or not. When
the bus is addressed with a 0, this is called “General Call”. For example you may use
this functionality to easily switch all controllers on the bus to a power saving mode
simultaneously.

Examples:

I2CTWI_initSlave(adr | TWI_GENERAL_CALL_ENABLE); // Enable general call
I2CTWI_initSlave(adr); // Disable general call

I²C Registers

Usual I²C peripherals can be controlled through a few readable/writeable registers.
Therefore the slave routines are designed to provide a number of “Registers” (in this
application an array of 8 Bit variables), which may be written or read by the master
device. In order to read data from a register or to write data into a register, the mas-
ter device has to send the slave address and subsequently the register address.

There are two uint8_t arrays. One for readable and one for writeable Registers.

- 102 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

The arrays and the variable for general calls are called:

I2CTWI_readRegisters, I2CTWI_writeRegisters and I2CTWI_genCallCMD
The readable registers are named I2CTWI_readRegisters and the writeable registers
I2CTWI_writeRegisters. The I2CTWI_genCallCMD variable stores the most recently re-
ceived General Call command. Data exchange in slave mode works completely with
these registers.

In order to make specific data available on the bus, you have to put it in the array
I2CTWI_readRegisters. A master may now read this data by addressing the corres-
ponding array position (equivalent to a register number). For instance, if a master
needs to read sensor data from a slave, the slave first has to put the information into
a predefined location in the I2CTWI_readRegisters array. Then the master can read
the data by transferring the register number to the slave and subsequently read the
information. The register number will be automatically incremented to allow the mas-
ter to read several registers in a single run.

A similar procedure has to be followed to write data. The master initially transmits the
register number and then starts transferring data. In analogy to the reading process,
the register number will be automatically incremented to allow the master to write
several registers in a single run. The slave performs this completely in background by
using interrupts.

While writing to the slave, data structures may easily get inconsistent if the data is
used simultaneously. If you read data from one register, another one belonging to this
register may have been overwritten by the master in the meantime. A better way to
handle these transfers is an intermediate storage location. Reading data may also lead
to inconsistencies in handling related variables (e.g. low and high bytes for 16 Bit
Variables).

I2CTWI_readBusy and I2CTWI_writeBusy
The interrupt routine sets the variable I2CTWI_writeBuisy to true – and this can be
used to check for writing access to this data. If it is set to “false”, we may transfer
data from the registers into temporary variables and use these for further processing.

The example program on the following page and the “slave”-example program on the
CD demonstrate this – there is a command register, used by the master device to
transfer commands to the slave (e.g. “start driving forwards at a speed of 100”). The
main loop of the slave device is constantly evaluating register 0 as long as
I2CTWI_busy is set to false. The arrival of a master command in register 0 will be fol-
lowed by transferring data from register 0 and registers 1 up to 6 into temporary vari-
ables, which may be evaluated afterwards. Parameter usage depends on the content
of the command variable. E.g. parameter 1 may describe a speed value for a move-
ment command and parameter 2 the direction. Any other parameters would be ig-
nored with this command.

The variable I2CTWI_readBusy works similar – it is set whenever a register is being
read and allows us to check write ability for registers and to prevent inconsistencies.
Current implementations cannot guarantee consistency to 100% as this would imply
deactivation of TWI-Interrupt during write processes to the registers, which might
cause other problems...

- 103 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

This example shows how a very simple slave program could look like:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include "RP6RobotBaseLib.h"
#include "RP6I2CslaveTWI.h" // Include the I2C Library file (!!!)
 // ATTENTION: do not forget to add this to the Makefile (!!!)

#define CMD_SET_LEDS 3 // LED command, which should be received
 // through the I2C Bus
int main(void)
{

initRobotBase();
I2CTWI_initSlave(10); // Initialise TWI set slave address to 10
powerON();
while(true)
{

 // did we receive some command and is there NO write access?
if(I2CTWI_writeRegisters[0] && !I2CTWI_writeBusy)
{

 // save register contents:
uint8_t cmd = I2CTWI_writeRegisters[0];
I2CTWI_writeRegisters[0] = 0; // and reset cmd reg (!!!)
uint8_t param = I2CTWI_writeRegisters[1]; // Parameter
if(cmd == CMD_SET_LEDS) // LED command received?

setLEDs(param); // set LEDs with the parameter
}
if(!I2CTWI_readBusy) // No read activities?

 // Proceed by writing current LED state to register 0:
I2CTWI_readRegisters[0] = statusLEDs.byte;

}
return 0;

}

The program itself will not perform anything (visible), thus you need a master to con-
trol the slave device. In this case, the slave can be accessed with address 10 on the
I²C Bus (see line 10). It provides two registers for writing and one register for reading
data. The first register (= Register number 0) is used for receiving commands. This
simplified example uses the command “3” to set the LEDs (can be any number). On
reception of any command - and no write access (see line 16) - the program will
store the contents of command register 0 to the variable “cmd” (line 19) and reset the
command register 0 to prevent repeated command execution! The program proceeds
by storing the parameter from register 1 to another temporary variable and check the
reception of command 3 (line 23). If the comparison is true, the LEDs will be set by
applying the received parameter value.
Line 26 checks if there is no read access in progress and stores the current LED re-
gister value to the readable register 0.
When the Controller on the Mainboard is programmed like this, a Master controller can
set the LEDs on the Mainboard through the I²C Bus and read back their current state.

The program will not perform anything else – a more detailed example program,
which allows control of virtually all available robot funtions can be found on the CD.
The sample program above only demonstrates the basic principles.
Basically there are 16 writeable and 48 readable registers. Whoever needs more or
less registers may adapt the corresponding definitions in the RP6Library file RP6I2C-
SlaveTWI.h.

- 104 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.6.11.2. I²C Master

In Master mode, the ATMEGA32's TWI Module can be used to control other
devices/Microcontrollers/sensors through the I²C Bus.

void I2CTWI_initMaster(FREQ)
This function initializes the TWI Module as master. Of course the Master mode does
not require an address – but we have to specify the data transmission frequency for
the TWI Module. You have to define the frequency in kHz by using the parameter
FREQ. A usual value is 100kHz, which can be set by a parameter value of 100. You
may speed up transmission by using values up to 400. Do not exceed the upper limit
400 for the TWI Module!

According to Atmel's specifications (see data sheet) the TWI Module
of the MEGA32 may only be operated at rates of up to a maximal
220kBit/s in master mode! A transmission frequency of 400kHz
would require a clock frequency over 14.4MHz, but for power saving
reasons, we chose a 8MHz clock frequency. But this is only a small
timing issue and it may still work properly for you. In slave mode,
this does not cause any problems at all and 400kBit/s can be used.
If you really need that fast communication, you can either try to set
the 400kBit/s mode and see if it works properly with your specific
slave devices or use the RP6 CONTROL M32 expansion module which
is clocked at 16MHz. Usually it should also work with 8MHz as this is
only a small timing issue. But we can not guarantee this!

Data transmission

There are a number of functions for transferring data with the I²C Bus. Basically these
functions are all quite similar, but they allow different number of bytes for transmis-
sion.

void I2CTWI_transmitByte(uint8_t adr, uint8_t data)
transfers one byte to the specified address.

void I2CTWI_transmit2Bytes(uint8_t adr, uint8_t data1, uint8_t data2)
transfers two bytes to the specified address. You will need this function frequently as
a number of I²C-devices requests data formats like:

Slave address – Register address – data

void I2CTWI_transmit3Bytes(uint8_t adr, uint8_t data1, uint8_t data2,
uint8_t data3)
is used quite frequently as well, especially the previously described slave program
communicates with data formats like:

Slave Address – command register – command – parameter1

- 105 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

void I2CTWI_transmitBytes(uint8_t targetAdr, uint8_t *msg,
uint8_t numberOfBytes)

Basically this function will transfer up to 20 Bytes to the specified address. For trans-
ferring greater data blocks, you may increase the I2CTWI_BUFFER_SIZE constant in
the Header file.

In order to specify a register for data transfer you may simply use the first byte of the
buffer.

Using all these functions is rather simple, e.g.:

I2CTWI_transmit2Bytes(10, 2, 128);
I2CTWI_transmit2Bytes(10, 3, 14);
I2CTWI_transmit3Bytes(64, 12, 98, 120);
The preceding example transmits successively two times two bytes to a slave device
with address 10 and additionally three bytes to a slave with address 64.

The other transmitXBytes-functions are used in a similar way.

Another example:

uint8_t messageBuf[4];
messageBuf[0] = 2; // Here you may optionally specify the addressed register.
messageBuf[1] = 244; // Data...
messageBuf[2] = 231;
messageBuf[3] = 123;
messageBuf[4] = 40;
I2CTWI_transmitBytes(10,&messageBuf[0],5);
Like this, you can transmit several Bytes (5 in this case) via the I²C Bus.

The previously described functions will not block the program flow, unless the I²C In-
terface is busy. A busy I²C Interface will cause the functions to wait until all transfers
are completed. Therefore checking for completion before calling the function will allow
you to perform other jobs while data transfer is in progress. Data transfer with the I²C
Bus is relatively time consuming compared to the micro-controller's speed and you
can save some time by checking this.

The following macro indicates whether the TWI Module is busy or not:

I2CTWI_isBusy()
If the module is free, you may transfer new data.

Data reception

The RP6Library provides several options for data reception. First we present a few
blocking functions, which have been designed in analogy to the writing functions. Ad-
ditionally we will discuss functions for receiving data in the background.

First of all the simple blocking function for reading data:

uint8_t I2CTWI_readByte(uint8_t targetAdr);
This function reads one byte from a slave device. This functions can not be used
alone, most likely you will have to transfer the register number with
I2CTWI_transmitByte before.

- 106 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

For example if you would like to read register 22 from a slave device with address 10:

I2CTWI_transmitByte(10, 22);
uint8_t result = I2CTWI_readByte(10);
The following function allows you to read several bytes:

void I2CTWI_readBytes(uint8_t targetAdr, uint8_t * messageBuffer,
 uint8_t numberOfBytes);
Example:

I2CTWI_transmitByte(10, 22);
uint8_t results[6];
I2CTWI_readBytes(10,results,5);
This code snippet reads 5 bytes from register 22 of a slave device with address 10. If
this data is really read from Register 22 varies from slave to slave device. Some will
increment the register number automatically (just like the slave code of the RP6Lib-
rary does) and other work completely different. You have to check the documentation
of your devices about this!

Reading data in background is a bit more complex task. First of all you will have to
start a request for a number of bytes from a slave. A background process will be star-
ted to retrieve these bytes from the slave device. In the meantime the controller is al-
lowed to perform other jobs, intermittently being disturbed by the interrupt routine.
Of course, we will frequently have to call a function from the main loop to check for
the arrival of requested data from a slave device or for a failure condition in the com-
munication process. On data arrival, this function automatically calls a predefined
Event Handler function for further data processing and it may immediately start re-
trieving the next set of data from other registers. Each request will be managed by its
own ID.

void task_I2CTWI(void)
is the function, which has to be called frequently from the main loop. This task has
been designed to check all transfers for error-free completion and to call the Event
Handler as required.

void I2CTWI_requestDataFromDevice(uint8_t requestAdr, uint8_t requestID,
uint8_t numberOfBytes)

This function allows you to request data from a slave device. After calling the function
a background process will automatically retrieve the data as described above.

Subsequently we can fetch the data by calling the function:

void I2CTWI_getReceivedData(uint8_t *msg, uint8_t msgSize)
We can fetch the data as soon as the Event Handler is called. The Handler has to be
registered by calling the function:

void I2CTWI_setRequestedDataReadyHandler(void (*requestedDataReadyHandler)
(uint8_t))
The Event Handler must have the following signature pattern:

void I2C_requestedDataReady(uint8_t dataRequestID)
This Handler will be called with the ID of the data request as parameter. We can use
the ID to differentiate between different slave devices.

- 107 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Apart from the requestedDataReady Handler there is an Event Handler for error-pro-
cessing. Whenever an error occurs in data transfers, e.g. by a non-responding slave, a
special Event Handler will be called. It has to be registered with this function:

void I2CTWI_setTransmissionErrorHandler(void (*transmissionErrorHandler)
(uint8_t))
The handler must have the signature pattern:

void I2C_transmissionError(uint8_t errorState)
defining an error state-code as parameter. You can find an overview of these error
codes in the “I²C Master Mode”-header file.

In fact, you can use this Event Handler for detecting errors for all, background, fore-
ground and blocking functions.

There are a few example programs for Master Mode on the CD – and we will discuss
then in detail in the next chapter.

- 108 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

4.7. Example Programs
The CD contains quite a few short example programs, demonstrating the robot's basic
functionality. Most of these examples are quite simple and far away from optimized
solutions. You have to consider most of the progrmas as a starting point for your own
programs. This is absolutely intentional, as this leaves some interesting tasks up to
you – would be quite boring just to load pre-fabricated programs onto the robot,
wouldn't it?

A few example programs focus more or less on experienced users. Especially the be-
haviour controlled robot programs, which allow the robot to simulate an insect's beha-
viour, belong to this category. With one of the example programs, the RP6 behaves
like a moth and searches for bright light sources and avoids obstacles. However ex-
plaining details about this would lead us far beyond the scope of this manual and for
all advanced applications we have to refer to the relevant literature.

Of course you may exchange your own programs with other users through the Inter-
net. The RP6Library and all example programs have been released under the open
source licencse “GPL” (General Public License). This allows modification and publica-
tion of derived programs according to the GPL, which of course implies you must re-
lease your derived programs under the GPL as well.

The AVR Microcontroller family is very popular and there are plenty of example pro-
grams for the MEGA32 available on the Internet already. However you will have to
pay attention to adapt example programs to the RP6 hardware and the RP6Library.
Otherwise programs will be malfunctioning most likely (common problems are differ-
ent pin assignments, different use of hardware modules like timers, different clock fre-
quencies, etc.)!

Except for the I²C Bus applications, all example programs have been designed to run
on the robot base unit only – without any expansion modules. Although this will usu-
ally not interfere with anything, you should start using expansion modules only after
you tried out all example programs and got familiar with the robot base unit.

Any programmable expansion kit is delivered with appropriate example programs. Al-
ternative and additional software may also be available on our homepage (example
programs for the RP6 CONTROL M32 are included on the RP6 CD).

By the way, programming of expansion modules like the RP6-M32 can be a bit easier
in some cases, as you do not need to care about too critical timing issues like ACS,
motor control and so on.

Additionally the RP6-M32 provides you with a lot of additional CPU power and memory
for more demanding tasks.

- 109 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 1: “Hello World”-Program featuring a running LED-light
Directory: <RP6Examples>\RP6BaseExamples\Example_01_LEDs\
File: RP6Base_LEDs.c
The program will output messages on the serial interface, thus you should con-
nect the robot to your PC and watch the output in the RP6Loader Terminal!
The robot does not move in this example program! You may simply put the robot
on a table next to your PC.
This program outputs a small “Hello World” text through the serial interface and sub-
sequently executes a running light with the LEDs on the Mainboard.

One minor detail in the running light is the “shift-left”-Operator, which has been used
in previous samples without any explanation:

1
2
3
4

setLEDs(runningLight); // Set the LEDs
runningLight <<= 1; // Next LED (shift-left Operation)
if(runningLight > 32) // Last LED?
 runningLight = 1; // Yes, so, let's start again!

We will explain this operator right now. Basically a shift-left operation “<<” (see line
2), allows you to shift the Bits in a variable for a predefined number of digits to the
left. Of course you may also use the equivalent shift-right operator “>>”.

This means that runningLight <<= 1; shifts all Bits in the runningLight variable to the
left by one digit. By the way: this is just a shortcut for:

runningLight = runningLight << 1;
which works similar for += and *=.

Initially the runningLight variable starts with a value of 1, which means only the Bit
number 1 is set. Each shift operation will move this Bit stepwise to the left.

Using this variable for LED control will result in a “moving” light-dot --> a running
light! In order to allow the human eye to follow the moving light dot, mSleep is used
to generate 100ms delays in between the loop cycles.

If Bit number 7 in the runningLight variable is set (which implies reaching a
value > 32), we have to return to the start by only setting Bit 1 in the variable (at
lines 3 and 4).

Example 2: Some more applications for the serial interface
Directory: <RP6Examples>\RP6BaseExamples\Example_02_UART_01\
File: RP6Base_SerialInterface_01.c
This program will output messages on the serial interface
The robot does not move in this example program!
This sample program demonstrates the usage of the functions writeInteger and
writeIntegerLength, which are used to output a few integer values in different formats
through the serial interface.

Furthermore the new “timer” variable introduced in Version 1.3 of the RP6Lib is
demonstrated. It can be used for time measurements with a resolution of 100µs.

- 110 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 3: Question-and-Answer Program
Directory: <RP6Examples>\RP6BaseExamples\Example_02_UART_02\
File: RP6Base_SerialInterface_02.c
This program will output messages on the serial interface
The robot does not move in this example program!
This more complex example is a little question-and-answer dialog, in which the robot
will ask four simple questions and you may reply by entering any answer in the ter-
minal. The robot will react with a text message or by starting a short running light.
The program demonstrates how to retrieve data from the serial interface and use this
data for further processing. Additionally you will learn how to use the
writeStringLength-function and there is another example for a switch-case construct.

The old functions for data reception through the serial interface have been replaced by
more powerful one in the latest RP6Lib version. This example program demonstrates
their usage directly. Now it is possible to process inputs of any length and to react
better on wrong inputs.

Example 4: Stopwatches Demo Program
Directory: <RP6Examples>\RP6BaseExamples\Example_03_Stopwatches\
File: RP6Base_Stopwatches.c
This program will output messages on the serial interface
The robot does not move in this example program!
This program is using four of the stopwatches. The first one is generating a running
light with 100ms refresh Interval and the others are being used for three different
counters incrementing in different intervals and outputting their values through the
serial interface.

Example 5: ACS & Bumper Demo Program
Directory: <RP6Examples>\RP6BaseExamples\Example_04_ACS\
File: RP6Base_ACS.c
This program will output messages on the serial interface
The robot does not move in this example program!
Although the filename only indicates an ACS application, this program demonstrates
ACS and Bumper usage with the corresponding Event Handlers. The example shows
the state of both ACS channels with the LEDs and outputs it with the serial interface.
The bumper status is only transferred with the serial interface.

Just move your hands in front of the robot and hit the bumpers!

You can use the program for testing the ACS with several different objects – just to
check which objects are detected well. You may also change the transmit power of the
ACS! The default value has been set to medium level.

- 111 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 6: The Robot is driving in a circle
Directory: <RP6Examples>\RP6BaseExamples\Example_05_Move_01\
File: RP6Base_Move_01.c
ATTENTION: The robot will move in this example program! Please remove the cable
between the PC and the robot after program upload and put the robot in a big
free area! You must provide a free area of at least 1m x 1m or even 2m x 2m.
Finally the robot is ready to start its engines! The example program lets the robot
dirve in circles by running both motors at different speeds. Please provide enough of
free space for the movements and allow the robot to move freely in this and all of the
following programs! Some of the programs require a free area of about 1 or 2 square
meters.

If the robot hits an obstacle during the circle movements, it will stop and two LEDs
will start blinking! The program now waits to be restarted.

Example 7: The Robot drives forwards and backwards – with a 180° rotation
Directory: <RP6Examples>\RP6BaseExamples\Example_05_Move_02\
File: RP6Base_Move_02.c
ATTENTION: The robot will move in this example program!
We already demonstrated time controlled movement with a small example in the pre-
vious RP6Library chapter. In contrast, this example will let the robot drive forwards
for a specific distance, perform a 180° turn, drive backwards for the same distance,
do a second 180° turn and start from the beginning again.

The example uses the blocking mode of the move and rotate functions, which will
automatically call the task_RP6System function. Therefore we do not have to call this
function frequently.

Example 8: The Robot moves in a square path
Directory: <RP6Examples>\RP6BaseExamples\Example_05_Move_03\
File: RP6Base_Move_03.c
ATTENTION: The robot will move in this example program!
Now the robot will try to move in a square path with 30cm edge length. It rotates
after each complete tour and moves on in the opposite direction.

This works fine with exactly calibrated encoders only, otherwise the 90° angles may
be inaccurate (e.g. 80° or 98°). Because of this, the example also demonstrates the
difficulties in accurately controlling a caterpillar vehicle with encoder feedback signals
only. In chapter 2 we have discussed these problems already. Depending on surface
conditions of the floor, the caterpillars will be slipping and sliding, which will reduce
the real distance compared to the measured values. Clever programming could enable
us to compensate these errors, but most likely it is not possible to achieve 100% ac-
curacy with the encoders only. Other external sensor systems have to be used for ex-
act positioning control (see appendix).

- 112 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 9: Excursion – Finite state machines
Directory: <RP6Examples>\RP6BaseExamples\Example_05_Move_04_FSM\
File: RP6Base_Move_04_FSM.c
This program will output messages on the serial interface
The robot does not move in this example program!
For more complex programs, the simple methods we discussed so far may not be suf-
ficient.

For instance, behaviour controlled robots require so-called Finite State Machines
(shortcut FSMs) – this would not be that easy with simple methods. This example pro-
gram demonstrates a simple FSM changing its state if a bumper is hit. To understand
the program's operation, just try it out and press the bumpers twice while you care-
fully observe the terminal's display and the status-LEDs. Press and then release the
bumpers slowly!

In C, most Finite State Machines will be designed by using switch-case constructs, or
alternatively a bunch of conditional statements by using “if-else-if-else”-constructs...
however switch/case will result in more clearly arranged source code.

Let's have a look at a simple example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

#include "RP6RobotBaseLib.h"
#define STATE_START 0
#define STATE_1 1
#define STATE_2 2
#define STATE_3 3
uint8_t state = STATE_START;
void simple_stateMachine(void)
{
 switch(state)
 {
 case STATE_START: writeString("\nSTART\n"); state = STATE_1;
 break;
 case STATE_1: writeString("State 1\n"); state = STATE_2;
 break;
 case STATE_2: writeString("State 2\n"); state = STATE_3;
 break;
 case STATE_3: writeString("State 3\n"); state = STATE_START;
 break;
 }
}
int main(void)
{
 initRobotBase();
 while(true)
 {
 simple_stateMachine();
 mSleep(500);
 }
 return 0;
}

- 113 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

To show you the basic principle, this example has been reduced to its essentials. A
state machine consists of different states and transitions between them. In our ex-
ample we have four states: STATE_START and STATE_1 up to 3. We may also visual-
ize the state machine above with the following graph:

“S” is the start state. We do not use any conditional state transitions here and there-
fore the system will change states up to state 3 and restart the sequence from state S
in each step. For better visualisation, there is a 500ms delay between the state
changes.
The program will generate the following output:

START
State 1
State 2
State 3

START
State 1
State 2
...
... etc.

The program may prolong this list endlessly.

The example program in file RP6Base_Move_04_FSM.c contains a more complex state
machine, featuring 8 states. The basic structure is shown in the following graph (in
this overview we abbreviated the labels of the states):

The state machine starts at state S and
immediately transits to state B (while
displaying a short text message). Having
arrived at state B the system will wait
until you hit one of the bumpers.
If you press down the left bumper, the
state machine will transit to state LD1
(“Left Down 1”) and to state RD1 on
pressing the right bumper. Now the next
transition has the condition that the
bumper is released again. If this hap-

pens, it will change state to either LU or RU. In both of these states, the machine will
only react on one of the bumper switches (left or right) and ignore any activities on
the other side. Only if you press the selected bumper once again, the state machine
will transit to the states RD2 and LD2, respectively. Releasing the bumper again, the
system returns to the S-state.
Of course this example program outputs an appropriate message for each state trans-
ition and will set the Status LEDs accordingly, but there was not enough space in the
graph for this additonal information. It just shows the general FSM layout.

- 114 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 10: Finite state machines, Part 2
Directory: <RP6Examples>\RP6BaseExamples\Example_05_Move_04_FSM2\
File: RP6Base_Move_04_FSM2.c
ATTENTION: The robot will move in this example program!
Now let's try out an FSM with a moving robot! The program is quite simple. First
Status LED 5 is blinking. With this, the Robot wants to tell us: “Would somebody push
the left Bumper, please?”. When you do this, RP6 moves backwards for about 15cm
and Status LED 2 starts blinking. Obviously, you are now supposed to push the right
Bumper, which lets the Robot move 15cm forwards again and the cycle starts from
the beginning.

The structure of the FSM is nothing special. It is nearly the same as in the first ex-
ample you saw above, where the program wrote “START State1 State2...” all the
time, but extended by adding a few conditional statements. In order to make the ro-
bot wait until a movement is complete, two states use the “isMovementComplete()”
function. Within these states, the program additionally executes a simple code frag-
ment using a stopwatch to toggle an LED in 500ms intervals. Of course, this fragment
may be replaced by any other code sequence – e.g. the running light from example 1.

We could write lots of pages about FSMs and similar topics, but as already stated –
this is only a manual and no reference book for Finite State Machines. So let's go on
with the example programs...

Example 11: Behaviour controlled robots
Directory: <RP6Examples>\RP6BaseExamples\Example_05_Move_04\
File: RP6Base_Move_04.c
ATTENTION: The robot will move in this example program!
The previous automaton examples lead the way to the following program, which im-
plements a simple behaviour controlled robot. To reduce the complexity we only use
two small behaviours. We will extend this basic program step by step in the following
program examples in order to create a simple insect-like behaviour. The first step only
provides our “insect” with two tiny sensors, which report collisions.

Our first two behaviours are named “Cruise” and “Escape”. The “Cruise” Behaviour
will only tell the Robot to “drive forwards” and does not perform any other activities.
Of course, we may add some other things, e.g. driving a curved track after some time
or accelerating and slowing down according to the battery voltage level. However, for
modularity in a well designed program we advise you to seperate this in additional be-
haviours.

In contrast to “Cruise”, the “Escape” behaviour is quite complex. It will get active as
soon as the bumpers detect collisions. According to which bumper was hit, the beha-
viour lets the Robot drive back for a few centimetres, roate a little bit and sub-
sequently returns control to the “Cruise” behaviour.

We can visualize this structure in a simple digram:

By using the “Suppressor” S the “Escape” behaviour suppresses the “Cruise”-behavi-

- 115 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

our's outputs and forces the system to feed the motor-control with its own com-
mands. Obviously “Escape” has higher priority than “Cruise”.

With these two very basic behaviours, the robot will already start to cruise around and
explore its' environment. The sensor system simply consists of two sensors for detect-
ing collisions. Of course this is nothing for very complex behaviours.

Just imagine a situation in which you would have to move around inside your home
restricting your senses to two fingertips – no eyes, no ears, none of your other senses
to help you except these two fingertips, which have to be held straight in front of you
all the time...

The more sensors the robot gets, the more the complexity of the robot's behaviours
may increase! Typically an insect is equipped with a vast number of sensors, which
can even provide analoge values indicating the sensed intensity. You may easily ima-
gine how the system's “intelligence” could be increased by equipping the robot with
insect's compound eyes...

Here we use a procedure invented by Rodney Brooks (http://people.c-
sail.mit.edu/brooks/) around 1985, the so-called Subsumption-Architecture.

The original publication(s) can be found here:

http://people.csail.mit.edu/brooks/papers/AIM-864.pdf
http://people.csail.mit.edu/brooks/papers/how-to-build.pdf
but you may find other relevant documents and summaries

(The Internet provides lots of additional information – simply start searching!)

Example 12: Behaviour controlled Robot 2
Directory: <RP6Examples>\RP6BaseExamples\Example_05_Move_05\
File: RP6Base_Move_05.c
ATTENTION: The robot will move in this example program!
Next step is to add an “Avoid” behaviour, which uses the ACS to avoid obstacles in-
stead of first colliding with them. The three behaviours are structured as shown in the
following figure:

Of course collisions have to be considered as most important events and therefore the
“Escape” behaviour still has the highest priority level. “Escape” will suppress the
“Avoid” commands and similarly “Avoid” suppresses the commands of “Cruise”.

As soon as the IR-Sensors have detected an obstacle the “Avoid” behaviour – just as
its name tells us - will initiate an avoidance-manoeuvre. If the left ACS-channel has
detected an obstacle the robot will drive a left turn and a right turn for the right ACS-
channel. If both ACS-channels detect obstacles, the robot will rotate to the left or to
the right according to the first reporting channel. The robot will even turn a bit longer
after both channels report free space again. The program uses stopwatches to control
these delay periods.

- 116 -

http://people.csail.mit.edu/brooks/papers/how-to-build.pdf
http://people.csail.mit.edu/brooks/papers/AIM-864.pdf
http://people.csail.mit.edu/brooks/
http://people.csail.mit.edu/brooks/

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 13: LDRs – Light sensors
Directory: <RP6Examples>\RP6BaseExamples\Example_06_LightDetection\
File: RP6Base_LightDetection.c
This program will output messages on the serial interface
The robot does not move in this example program!
This sample program demonstrates how to use the two light sensors. In order to in-
dicate which sensor is most intensely illuminated (or whether both sensors are illu-
minated equally) we use the StatusLEDs. Along with measurement values, the pro-
gram will continuously report these informations to the serial interface, too.

Example 14: Behaviour controlled robots 3
Directory: <RP6Examples>\RP6BaseExamples\Example_07_LightFollowing\
File: RP6Base_LightFollowing.c
ATTENTION: The robot will move in this example program!
Of course, the light sensors can be used to extend the robot's design by implementing
a behaviour named “FollowLight”:

The priority or “FollowLight” is below Escape and Avoid, but above Cruise, which im-
plies the “Cruise” behaviour will never be activated in this example unless the room is
very dark (as soon as both LDR-levels drop below 100, the “FollowLight” behaviour
will be deactivated).

The “FollowLight”-behaviour tries to follow bright light-sources or the to find the
brightest light spot in a room by using the LDRs. Of course the simple algorithm and
simple sensor arrangement may fail in special conditions – e.g. if the robot is confron-
ted with a great number of equivalent light sources. However the system can be quite
successful in a darkened room, if it tries to find an intense torch light.

This program uses the LEDs in a dual mode – if ACS is not reporting an obstacle, the
LEDs indicate which of both light sensors is detecting the highest intensity and as
soon as the ACS is reporting an obstacle, the LEDs indicate that.

This program completes the overview of examples for behaviour controlled robots by
simulating a simple insect behaviour. The robot behaves like a moth in searching and
tracing light sources and simultaneously avoiding obstacles.

The robot may be extended by using additional sensors on expansion modules and by
programming your own behaviours and improving existing behaviour functions. These
options largely depend on your own creativity and programming capabilities!

- 117 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 15: Remote control by using a universal RC5 IR RC
Directory: <RP6Examples>\RP6BaseExamples\Example_08_TV_REMOTE\
File: RP6Base_TV_REMOTE.c
ATTENTION: The robot will move in this example program!
This example program enables you to control the robot just like a Remote Controlled
Car by using a standard RC5 IR remote control. Compared to standard functionality
for most RC-Cars, we added a few extra movements.

Of course, the vehicle can drive forwards and backwards, but is also able to rotate left
and right on the spot. Additionally the robot may drive in a curve forwards/backwards
to the left and right. It can even start a single motor in forwards or backwards direc-
tion.

In order to keep the program flexible, you can assign all these movement commands
to custom key codes matching your specific remote control. Movements are started
when a specific key code is received and the motor speed is accelerated slowly. When
you release the key, the motor speed is decelerated even slower. This means that the
robot accelerates and decelerates that slow intentionally (just in case you wonder
about that). It is also possible to immediately stop the robot within one or two centi-
metres (depending on load and speed) by pressing a special button.

RC5 reception may be used for various other functions – e.g. to start different pro-
grams, to set parameters in behaviours, to modify control parameters in speed con-
trol, etc...

With some universal remote controls it would be possible to control several robots by
using special function keys for selecting different devices – these function keys have
to be programmed to transmit RC5 signals and to address different devices – this en-
ables us to control several robots with one singule remote control.

Example 16: I²C Bus Interface – Master Mode
Directory: <RP6Examples>\RP6BaseExamples\Example_I2C_MASTER_01\
File: RP6Base_I2C_MASTER_01.c
This program demonstrates how to use the Master Mode of the I²C Bus. Of course
you will have to connect a suitable slave device to the I²C Bus before running
this program.
By using 8 LEDs, this example program implements a simple “Knight Rider”-running
light. The LEDs are connected to a standard 8-Bit I²C Bus Port expander PCF8574.
You may insert and solder the PCF8574 on the experiment expansion module (or ini-
tially start a test by building the circuit on a breadboard). This already provides the
system with 8 free I/O-Ports for evaluating digital sensors or alternatively control
small loads, e.g. LEDs. Of course a big load requires external extra transistors or oth-
er driver devices.

This chip is a very useful device and you may use a several of them on the same bus.
The only thing you have to do is to select an appropriate address for each chip with its
three address pins. If you want to use more than 8, you have to use 8 normal
PCF8574 and up to 8 more PCF8574A – which is using a different base address. This
allows you to address 8 of each type for controlling a total of 16*8 = 128 I/O Port Pins
through the I²C Bus!

- 118 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 17: I²C Bus Interface – Master Mode
Directory: <RP6Examples>\RP6BaseExamples\Example_I2C_MASTER_02\
File: RP6Base_I2C_MASTER_02.c
This program demonstrates how to use the Master Mode of the I²C Bus. Of course
you will have to connect a suitable slave device to the I²C Bus before running
this program.
We added PCF8591 routines to this example program. The PCF8591 chip contains an
8-Bit Analog/Digital Converter (ADC) with 4 channels and a Digital/Analog Converter
(DAC) for generating analog voltages. Thus, PCF8574 and PCF8591 devices perfectly
complement one other.

The PCF8591 allows you to monitor four different voltages – our example has been
designed to evaluate four additional LDRs (arranged as voltage dividers). However the
actual circuit is quite negligibly – we could use four Sharp GP2D120 IR distance
sensors, some temperature sensors or any similar devices as well.

One main disadvantage in using these chips is that it is a bit time consuming to re-
ceive the measurements via the I²C Bus compared to an integrated ADC or I/O Port.
This restricts both ICs to simple, non timing-critical applications. Whoever needs fast
response and control should consider using another Microcontroller. Obviously a
second, freely programmable controller will complicate the system, but will also make
it more flexible!

We included detailed data sheets for the devices PCF8574 and PCF8591 on the CD!

Example 18: I²C Bus Interface – Master Mode
Directory: <RP6Examples>\RP6BaseExamples\Example_I2C_MASTER_03\
File: RP6Base_I2C_MASTER_03.c
This program demonstrates how to use the Master Mode of the I²C Bus. Of course
you will have to connect a suitable slave device to the I²C Bus before running
this program.
This simple program demonstrates how to control a Devantech SRF08 or SRF10 Ultra-
sonic distance sensor via the I²C Bus. Of course, the program may be adapted for us-
ing similar types of sensors from other manufacturers.

Example 19: I²C Bus Interface – Master Mode
Directory: <RP6Examples>\RP6BaseExamples\Example_I2C_MASTER_04\
File: RP6Base_I2C_MASTER_03.c
This program demonstrates how to use the Master Mode of the I²C Bus. Of course
you will have to connect a suitable slave device to the I²C Bus before running
this program.
In this example program, the Master is controlling four I²C Slaves: two SRF08/SRF10,
one PCF8574 and one PCF8591. The program is reuses code from the three previous
examples.

Other programming examples for peripheral I²C-devices will be supplied along with
the corresponding expansion modules!

- 119 -

RP6 ROBOT SYSTEM - 4. Programming the RP6

Example 20: I²C Bus Interface – Slave Mode
Directory: <RP6Examples>\RP6BaseExamples\Example_I2C_SLAVE\
File: RP6Base_I2C_SLAVE.c
Initially this program will not perform anything visible from the outside. You
will have to add an expansion module to the robot, which takes over control and
acts as I²C master.
It makes sense to equip the robot with several additional Microcontrollers. In most
cases it is a good idea to let one of the additional Microcontrollers control the com-
plete Robot. Not only bigger and faster controllers can do this, but also another
MEGA32. The Controller on the Mainboard performs several tasks already like ACS,
Motion Control etc. and this consumes quite a bit of processing time (lots of Interrupt
events). On an external Controller, you will have more spare time.

This is the idea behind this program: a master controls the high level overall function-
ality of the robot and sends commands to the slave through the I²C Bus, which
handles the low level control. All known functions like the automatic motion control
now show their real advantages – the master only has to transmit short commands
like “drive forwards at <speed parameter>” and the rest is done automatically. Of
course running tasks may be aborted for example after sensors detect obstacles.

The program's source code contains a list with all valid commands and the corres-
ponding parameters. Additionally the program source code contains further details for
controls.

If necessary, the slave controller automatically initiates an interrupt signal on the first
interrupt signal line (INT1). This can be used by the Master to detect sensor or motion
state changes fast and easily.

The Sensor values can be read from a number of registers. If an Interrupt event has
been triggered, the master can start reading some status registers and check what
caused the interrupt event. Afterwards the corresponding register can be read.

Alternatively you might simply read ALL sensor registers at once, which takes some
time, of course.

Detailed informations to this topic and of course specific register details are to be
found in the program's source code.

Further example programs for robot control will soon be published along with expan-
sion modules. A few of these programs and the RP6 CONTROL M32 examples are
available on the CD-ROM already.

- 120 -

RP6 ROBOT SYSTEM - 5. Experiment Board

5. Experiment Board
There is already an experiment expansion
module for assembling your own circuits in-
cluded in the delivery of the robot. The mod-
ule is supplied as a kit. You will have to COR-
RECTLY insert and solder the connectors by
yourself. Pay special attention to the correct
polarity - check the PCB's white silkscreen
printing.

Assembling your own circuits with wired com-
ponents requires some experience in solder-
ing and basic knowledge of electronics. Of
course you must have a basic idea of what
you are doing...

Now let's see what kind of circuits could be assembled on the experiment board.

In the previous chapter we already provided two examples! You could add additional
I/O Ports or A/D Channels with the described Port-Expanders and A/D-Converters.
These can be used to interface with light sensors, IR-sensors, touch-sensors, LEDs,
and so on. Additionally the I²C Bus system enables you to interface with more com-
plex sensor modules, e.g. ultrasonic distance sensors, electronic compass modules,
gyro or acceleration sensors. Other interesting sensors are pressure-, temperature-
and humidity-sensors in order to build a small mobile weather-station.

Basically the system allows you to attach any number of expansion boards to the ro-
bot. You do not have to restrict it to a single board. Whenever you are planning to
design complex systems, you should consider to install another Microcontroller. RP6
Control M32 would be a suitable device, providing your system with an extra control-
ler, 14 free I/O lines (including 6 A/D converters). The I/O-lines are available on 10-
pin connectors. You may easily assemble some flat cables to connect the module to
your expansion boards. Soon there will be a “C-Control”-expansion module, which will
equally be suitable to serve complex designs.

Of course, the robot's main board also provides 6 extension areas, which may be at-
tractive for sensors that need to be as low over the floor as possible (e.g. additional
IR-sensors). However we advise you to start expansion-projects by working with the
experiment module before soldering parts to the main board as removals of compon-
ents will be easier if something goes wrong...

- 121 -

RP6 ROBOT SYSTEM - 6. Closing words

6. Closing words
Here, this small introduction to the world of robotics ends. We hope you enjoyed all
activities with the RP6 so far!

All beginnings are difficult, especially this complex topic, but once you mastered the
first hurdles, you will have a lot of fun with robotics and you will easily learn a lot.

As soon as you got familar with C-programming, you may start your own interesting
projects. We already suggested some ideas for projects in the field of robotics, but of
course your own ideas may be more interesing!

You are invited to discuss about robotics and electronics in several dedicated web for-
ums. Usually this will be much more informative than any manual could be. Even this
fairly long manual does not allow us to discuss all relevant topics and a great number
of details have been left out.

Of course we plan to develop some more expansion modules for the RP6. We already
released the breadboard experiment module and the RP6 CONTROL M32 providing an-
other MEGA32 Controller (including a microphone sensor, piezo sounder, a hughe ex-
ternal 32KB EEPROM memory, keys, LEDs and a LCD Port). We also plan an expansion
module for newer Conrad Electronic C-Control Modules (e.g. for the C-Control PRO
MEGA128).

We will develop modules with additional sensors, but right now we can not tell you
any specific details...

As soon as new modules are released, we will announce this on the AREXX Homepage
and in our forum!

Until then, you will surely be buisy with the RP6-system itself
and the already available expansions!

- 122 -

RP6 ROBOT SYSTEM - APPENDIX

APPENDIX
A - Troubleshooting

This appendix lists a number of problems and possible causes, solutions and/or sug-
gestions how to avoid problems. The list may be extended and updated from time to
time!

1. The robot can not be powered on – none of the LEDs lights and the ro-
bot does not react on the start/stop button!

● The USB-Interface is connected to the robot, but not to the PC! This connec-
tion will hold the MEGA32 in reset mode, which does not allow the controller
to turn on any of the LEDs. Always start by connecting the USB Interface to
the PC before connecting it to the RP6! The same problem may occur if the
PC has been switched off.

● One expansion module holds all Microcontrollers in reset mode – which may
easily happen in your own designs (it may happen in pre-assembled designs
as well, but usually this is restricted to defects or software bugs). You may
test for this condition by removing all expansion modules!

● You may have removed batteries or you are using empty or defective bat-
teries.

● The main fuse is open. Please check the fuse with an Ohm meter (or a Multi-
meter). Quite often a broken fuse can be easily checked by looking at the
thin wire inside of the fuse's glass-housing. Fuses normally will blow at the
middle of the thin wire, but sometimes the disconnection cannot be ob-
served by visual inspection and must be checked with a Multimeter!

ATTENTION: Whenever the fuse blows you must check for irregular condi-
tions in the system! Somewhere a short-circuit may have been causing high
currents (did you forget to remove some metallic tools or other objects from
the robot's body?) or individual parts are drawing a heavy load current.
Please inspect the PCBs and all parts! You may have modified the robot's
circuits and/or you may have been using wrong components. Did you insert
batteries with correct polarity? Did you avoid squeezing the cables between
main board and frame? Did you recently attach expansion modules? If you
did, you will have to dismount all expansion modules before restarting the
tests! If all checks seem to be OK and all expansion modules have been re-
moved, you may insert a suitable, fast 2.5A fuse and try again.

2. The robot refuses to start programs!

● Did you press the Start/Stop button after the program upload?

● Did you correctly upload a program to the RP6? Did you select the right pro-
gram?

- 123 -

RP6 ROBOT SYSTEM - APPENDIX

3. While moving, the robot repeatedly generates resets and halts the pro-
gram!

● The batteries do not provide the system with enough power!

● The batteries are malfunctioning (poor quality or too old) and causing
voltage drops during operations, which will automatically result in a reset.
Please use fresh batteries for your robot in this case and try again!

● Batteries are not inserted tightly in the battery compartment or the power
wiring system has loose contacts somewhere.

● An expansion module may have caused an overload!

4. The RP6Loader fails to connect to the robot!

● The USB cable or the 10pin flat cable may have loose contacts (please care-
fully wobble the USB plug a bit!).

● You selected an incorrect port in the RP6Loader Software.

● The port is used by another application and therefore it is not shown in the
port list. Please close all applications, which may be using USB Ports or USB-
serial converters. Subsequently refresh the RP6Loader's port list and restart
the RP6Loader!

● You may have activated “Invert Reset Pin” in the RP6Loader's Preferences
dialog – deactivate this option!

● The robot has been switched off or the batteries are empty/nearly empty.

● The cable or the plug have been damaged – which is rather uncommon, but
may happen with high mechanical stress.

5. The robot generates strange noises when moving!

● Strange noises may have several reasons. You will have to open the robot to
check the gears and motors. The power cables may have moved into the
gearing system? Just a few rattling noises are quite normal and will
not cause problems! At high speeds the robot certainly will generate more
noise (but definitely not reach the extreme sound levels of the old prede-
cessor CCRP5-system).

● Maybe one of the adjusting collars (fixing bolts) at the gearwheels, at the
front wheels or anything else has loosened? All wheels must rotate freely
(test this by carefully turning the wheels on the rear!), but the gearwheels
are not allowed to be grinding at each other!

● A few drops of oil applied to both ball bearings of each motor – at the front-
side and at the backside where you may view the motor shaft – may reduce
noise generation (ATTENTION: Please strictly use special oil for ball bear-
ings only!! e.g. Conrad part number 223441-62 “Team Orion Free Revs Ball
Bearing Oil #41701”). During and after this oiling-procedure for the ball
bearings, the motor shafts have to be rotated in order to adequately spread
the oil over the bearing's surfaces (hold the motor upright for a few seconds
to allow the oil film to flow into the bearing)! After this, any oil residues
should be wiped away! Bearings should have been oiled during manufactur-
ing in the factory already, but the oiling procedure may need a refresh again
at certain intervals!

- 124 -

RP6 ROBOT SYSTEM - APPENDIX

Please do not consider to oil the gearwheels this way! This may destroy the
encoder system! Even if the oil is not damaging the electronic components,
the fluid may damage the encoder wheels/stickers, which can soak any flu-
ids very well and this will drastically influence reflectivity! Additionally rotat-
ing gearwheels may spread these fluids and lubricants anywhere inside the
robot's interior! The application of lubrication grease (non-fluids!) is
restricted to the shafts (!) of both cluster gears only! Usually grease
will not improve noise at all...

6. With every program, the motors just accelerate very shortly up to a
high speed, and then immediately stop. Subsequently four red LEDs
start blinking!

● The simplest possibility: You loaded a self-written or modified example pro-
gram to the robot and forgot to execute “powerON();” before starting the
motors!

● Did you modify the software (especially the library) in any way? Try some
other programs and the self-test program.

● If other programs and the self-test behave in a similar way: check the out-
put on the serial interface! Additionally to the four red blinking LEDs, the
system outputs an error message which you can look at in the terminal.
Most likely, the encoder system may cause this malfunction. Sometimes the
adjusting collars, fixing the encoder wheels, may have detached, causing the
gearwheels to drift away from the sensors. In this case the encoder system
will stop delivering feedback signals! By the way: we provided the encoders
with tiny potentiometers (=variable resisters) to adjust the sensors (use a
fine 1.8mm slot screwdriver or a suitable cross slot screwdriver! BUT BE
VERY CAREFUL: Adjustment usually requires the use of an oscilloscope! Oth-
erwise the calibration procedure may be difficult. The self-test program will
show if the encoders work properly. We provided the program with a special
mode (c - Duty Cycle Test) to roughly check the duty cycle for the square
wave signal. 50% duty cycle are optimal. However, deviations and fluctu-
ations between 25 and 75% can be considered as tolerable (incidentally the
program may report errors, which is quite normal: the cause for these errors
is located in the program and not in the encoder system). Most of the duty
cycle values should be in the range of 30 up to 70% and the Duty Cycle Test
should report an “OK”-status most of the time. During tests the test-pro-
gram will deactivate the motor-control and run the engines at a fixed PWM-
value. Speed measurement values will be shown in encoder counts per
200ms.

● Maybe the encoder wheels have been damaged? For instance by oil or lub-
rication grease as described previously?

● Check the cables to the encoder system for possible damage, e.g. by using a
Multimeter (switch the robot off and check every single wires for connection
between both ends and for short circuits to its neighbours!)!

● Check the tiny IR reflection sensors of the encoders for polluted areas.

● The LEDs will also start blinking as soon as one motor is (or both motors
are) malfunctioning – so check the wiring and the printed circuit board, es-
pecially near the motor drivers.

- 125 -

RP6 ROBOT SYSTEM - APPENDIX

7. The robot is either not moving or moving slowly and/or starts blinking
four red LEDs immediately or shortly after a program's start!

● The 4 LEDs will also start blinking on low battery voltage! Just connect the
robot to the PC and see if a low voltage warning appears if you click “Con-
nect” in the RP6Loader! If you press the robot's reset button and the Boot-
loader begins to wait for a start signal, low battery voltage will also cause
the four LEDs to start blinking! In this situation, the program may still be
started, but the robot will soon stop again and start flashing the LEDs...

● If you are sure that batteries are fully charged and the status field of the
RP6Loader reports a battery voltage well over 6V, check for other error-
messages in the terminal. One of the gearing systems or both may be
blocked, e.g. by over-tightened adjusting collars, by a gearwheel catching a
cable, or gearwheels interfering with other parts. Remove obstacles and
carefully loosen over-tightened adjusting collars should fix this.

● Worst case, the motors or even the electronic control circuits may have been
damaged, which requires an exchange of damaged components... Please
start the selftest program #8 (Do NOT allow the robot to touch the floor
while the test is in progress – both caterpillars must be moving freely! Do
not block or brake the caterpillars manually! Blocking will immediately result
in a test failure!). The selftest program will check the motors and the elec-
tronic control circuits including the motor current sensors. Does the selftest
report any error messages? (We advise you to copy the complete terminal's
contents to a text-file e.g. by Menu “Options-->Save Terminal”).

8. My battery charger does not charge the batteries inside the robot!

● Did you correctly connect the battery charger? Check polarities of cables,
and plugs.

● Did you correctly insert the batteries? Check for defective or loose contacts.
Check polarities of cables, plugs and batteries.

● Maybe the charger's plug fails to match to the inner pin of the charger con-
nector resulting in an open power connection? (Different versions of these
plugs exist, which usually may be interchanged without problems. Standard
battery chargers are supplied with an appropriate set of adapter plugs)

9. The ACS fails to reliably recognize obstacles!

● Did you already test various different ranges and power settings?

● Are the IR LEDs or the IR receiver misaligned? Check the alignment and ad-
justment of IR LEDs and the IR receiver. IR LEDs must be adjusted to al-
most stick straight out of the sensor-board, but should be aligned to point
outwards with an angle of approximately 5-10°. The IR receiver has to be
aligned straight 90° upwards (see photographs on this page and chapter 2).

- 126 -

RP6 ROBOT SYSTEM - APPENDIX

● The ACS will often fail to detect black or very dark obstacles. Black objects
more or less tend to absorb IR light completely. This is normal physical be-
haviour! You may additionally have to use other sensor types (ultrasonic
rangers for example...) in order to make object detection reliable!

● The robot is operated in an environment with bright illumination, e.g. with
direct sun light, fluorescent lamps, or background illuminations of flat
screens. These light sources may disturb IR-communication and ACS.

10. The IRCOMM fails to receive my remote control's signals! The robot
does not react to these signals!

● Does your remote controller really transmit RC5 formatted signals? If you do
not know for sure, it probably does not. The software will only recognize the
RC5 format. You will have to switch the remote control to another coding
system (most universal remote controllers allow you to set an RC5 format)
or use another remote control.

● Key assignments may vary from type to type and from manufacturer to
manufacturer. Always start by assigning the keys for your program. The
comments in the RC5 example program source code provide you with
guidelines how to assign keys. Check the output codes in the terminal,
which will display the key-codes for the RC5 example program!

11. The robot fails to exactly turn a specific angle.

● This is normal behaviour and the manual already explained the reasons for
these deviations! Caterpillar drive units will always cause deviations by slip-
ping and sliding. Also the Encoders have to be calibrated in order to work as
intended. See appendix B for more details.

12. Why does even an extremely short program occupy 7 KB of memory?

● Each program always includes the RP6Library, which will occupy over 6.5KB
of program memory, so 7 KB must be considered as a standard program's
size. You will soon notice the program's size will not increase that much with
your source-code's length. Don't worry for your memory's size. The memory
provides you with ample room for your programs. And if your program's size
ever exceeds the memory's limits, you may consider the use of an expan-
sion-module with an additional Microcontroller.

13. My programs cannot be compiled – the compiler ends up with some er-
ror-message!

● Check the error-message and try to understand what causes this. If you
have to contact the support, first copy the complete compiler report to a
text file. Then send the compiler messages and your source file to the sup-
port! The following overview lists common programming errors:

■ You forgot to include the RP6Library, or the pathnames in the Makefile
are incorrect. If you start a new project do not forget to alter the
pathnames in the Makefile! Otherwise the compiler will fail to find
these files!

■ Did you forget a semicolon anywhere in the program?

■ Is an accolade missing or superfluous in the program?

- 127 -

RP6 ROBOT SYSTEM - APPENDIX

■ Did you respect the correct C syntax? Apart from comments and usual
formatting rules for spaces and tabulators any writing variant of the
symbols is relevant for the C compiler. If tHis manuAl contais erorS,,
the text's contnt may sill b cleary uderstoooD bi tha readr.! Compilers
do not allow any mistakes and may generate a hughe number of er-
rors for the smallest mistakes. Unfortunately the compiler does not
have an automatic error correction comparable to that of us
humans...

14. My programs are still not working and the robot does not obey to my
commands – what is going wrong?

● No idea! ;-) You will have to be more specific in describing your problems to
the support. We often receive questions like “Why is this program malfunc-
tioning?”. Dot. Of course, we need a bit more detailled description of what
the program is supposed to do at all and what is not working! Otherwise this
quickly turns out to be a quiz game...

● Usual beginner mistakes are:

■ Adding a semicolon at the wrong location – e.g. closing a loop or an
if-statement. Often you are allowed to insert a semicolon-symbol
there, but it will not work as you may have intended!

■ Providing if/else-constructs with accolades at wrong positions – this
may easily happen if your program's indentation structure is bad.

■ Using incorrect data types for variables – e.g. the uint8_t data type
may accept values in the range from 0 up to 255, but cannot be used
to count up to 1500! To count this far you will have to use an
uint16_t! The uint8_t data type will not accept negative values as
well. To work with negative values, you will need a signed data type
like int8_t! Check the overview of all data types at the start of the
small C crash-course!

■ Forgetting the infinite loop at the program's end – if this infinite loop
is missing, your program may produce strange results.

■ You are using the non-blocking mode for “move” or “rotate” functions,
but you do not frequently call “task_motionControl” or the
“task_RP6System” functions! Or your program contains long pauses
generated with mSleep. In using the non-blocking mode for “move” or
“rotate” functions or using the ACS you must use stopwatches for all
delays over approximately 10 Milliseconds! The mSleep-function and
other blocking functions should not be used in combination with non-
blocking functions! Please read the RP6Library's chapter again for de-
tails and study the example programs!

■ Always remember to save altered program's sources before re-
compiling! Otherwise the compiler will compile the previous
unaltered version on your harddisk! In doubt, you may execute
MAKE CLEAN and re-compile again!

- 128 -

RP6 ROBOT SYSTEM - APPENDIX

15. You are confronted with other problems?

● Try reading the important sections of the manual again! It may often help,
but sometimes it does not...

● Did you already download the latest software versions and the recent manu-
al version from http://www.arexx.com/ or from the RP6 homepage
http://www.arexx.com/rp6 ?

● Did you use the search function of our forum?
--> http://www.arexx.com/forum/

● For C language, AVR or Microcontroller related problems, did you visit the
AVRFreaks website? --> http://www.avrfreaks.net/

● Did you generally visit both forums at all? (Please do not start by immedi-
ately posting a new topic – start by searching for your problem using differ-
ent search queries!). You can also try using a general web search engine.

- 129 -

http://www.avrfreaks.net/
http://www.arexx.com/forum
http://www.arexx.com/rp6
http://www.arexx.com/

RP6 ROBOT SYSTEM - APPENDIX

B – Encoder calibration
The effective encoder's resolution depends on the real wheel and rubber track diamet-
er. The caterpillar's rubber tracks get pressed into the surface or get impressed them-
self. Additionally, manufacturing tolerances cause variations in diameter sizes. To
compensate for these deviations we will have to perform some measurements and
calibrate the encoder resolution.

The resolution is the distance covered with each encoder step. A theoretical value for
the robot's resolution is 0.25mm / encoder step, but from practical experience we de-
rived resolution values ranging from 0.23 up to 0.24mm.

To calibrate the encoder's resolution, we let the robot drive a predefined, long and
straight distance (e.g. one meter or more), which subsequently has to be measured
accurately with measuring tape. In order to show the number of encoder steps, the
robot is connected to the PC during this movement. The USB cable and the flat ribbon
cable will have to be guided loosely over the robot – do not pull or hold the cable! The
bumper's PCB-front-side could be aligned exactly with the beginning of the measuring
tape. Adjust the robot's path accurately to a straight line parallel to the the measuring
tape.

As an exercise, we suggest to write a program for actuating the robot to drive exactly
one meter. Alternatively you may also choose 2 meters or any other distance (most
important is that the cable is long enough). Of course you may re-compile the pro-
gram for various distances and reload the modified program to the robot. Each pro-
gram version should output lists of the covered distances in encoder steps. (If you are
too lazy – there is also a menu option in the selftest program that can do this ;-))

One meter corresponds to exactly 4000 encoder-steps at a 0.25mm-resolution. Now if
in a test run the robot moves only 96.5cm = 965mm and the counter reports a total
count of 4020 encoder steps, we may calculate a resolution of approximately 0.24mm
by simply dividing 965mm by 4020. Please note these values in a table. Repeat the
calibration procedure a few times and note the values in a table. Now calculate and
enter the average value into the parameter-field ENCODER_RESOLUTION in the file
RP6Lib/RP6Base/RP6Config.h (a relative path from the main example program direct-
ory – don't forget to save the file!), the re-compile the program and load it into the
robot. Repeat this test thrice. Each test should improve the results in driving exactly
one meter's distance. If no improvement is observed, repeat this and enter the new
value in the configuration file. You will however fail to perform a 100% exact calibra-
tion – to do so you would need lots of additional sensors.

Rotating the robot on the spot will even deteriorate calibrations. These rotations will
cause the caterpillars to slide on the floor, resulting in much shorter real distances
with respect to measured values. Results will heavily depend on surface conditions.
Slipping conditions on a parquet or a carpet may vary the caterpillar's calibration
parameters slightly. Therefore you always have to consider calibration tolerances up
to 10° (for rotation). Additionally certain surfaces may cause the robot to slip aside.
To include these side effects in calibrations you will need to do some more trials.

You can try to lift up the robot while it is rotating at the front Bumper Panel, such that
only the back wheels touch the ground. You will notive how much faster the robot
turns now – this gives you an idea of how big the difference is.

- 130 -

RP6 ROBOT SYSTEM - APPENDIX

Improved methods for distance- and positioning-measurements

Encoder measurements will never get 100% accurant. If you need better navigation,
you will have to use additional sensors.

For example, the University of Michigan in the USA designed a tiny trailer carrying the
encoder sensors for one of their big caterpillar-robots. The robot pulls the trailer,
which has been connected by a pivotable metallic rod. Encoder wheels at the trailer's
axles deliver accurate positioning data after performing a few calculations. Details
may be studied on the following website:

http://www-personal.engin.umich.edu/%7Ejohannb/Papers/umbmark.pdf
starting at page 20 (or page 24, respectively in the PDF-version)
or in: http://www.eecs.umich.edu/~johannb/paper53.pdf
We might design a similar construction for the RP6 (though it will not be easy) – al-
ternatively you may consider to start some experiments by fixing an optical computer
mouse on the robot's rear or front. Additionally you could use an electronic compass
or similar devices, which will be mounted at the very top of the robot (to avoid inter-
ferences with the motors and other electronics) and enable accurate rotational move-
ments.

Of course a Gyro may be an alternative positioning sensor as well...

We did not test these ideas, which must be considered as thought provoking impulses
for further improvements and studies... and of course some users may not be inter-
ested in accurate movements anyway - adding a mouse sensor also restrains the
vehicle's offroad capabilities.

Basically perfect positioning requires the use of landmarks, which have to be posi-
tioned at accurately defined locations. Of course, these positions must be well known
and easily recognizable by the robot, e.g. infrared beacons transmitting a guidance
signal for the robot. The Robot can detect direction of the beacons.

Or you implement line tracing sensors for following markings on the floor.

As a matter of fact we might think of much more complicated positioning methods ...
but we will restrict this overview only to a few ideas requiring a minimal amount of
CPU power. We might install a camera to the ceiling and remotely control the robot by
special pattern-recognition software and transferring command data by wireless or in-
frared signals. Some users already managed to create a similar remote control system
for the small ASURO robot...

You will notice that it is easy to navigate the Robot relatively accurate by using a re-
mote control. Obviously accurate controlling is largely supported by visual feedback of
the user, who directly observes directions, obstacles and targets! The robot is unable
to see these details without cameras and powerful image processing. A camera at the
ceiling and a color marking on top of the robot would provide us with an external
sensor for more accurate visual feedback...

- 131 -

http://www.eecs.umich.edu/~johannb/paper53.pdf
http://www-personal.engin.umich.edu/~johannb/Papers/umbmark.pdf

RP6 ROBOT SYSTEM - APPENDIX

C – Connector pinouts

This overviews provides you with the most important connector pinoutson the main-
board. Additionally we extended the list by a number of details for usage.

For the sake of completeness we start by defining the con-
nector pin assignments for the expansion connector once
again (s. chapter 2):

At the main-board pin 1 is located at the side of the white-
coloured labels XBUS1 and XBUS2, respectively, or at the
label “1” next to the plug.

+UB is the battery voltage, VDD the +5V-supply voltage,
GND the “negative” terminal (GND = Ground), MRESET
the Master Reset Signal, INTx are Interrupt-lines, SCL the
Clock- and SDA the Data-lines for the I²C Bus.

Important information: Please restrict the maximal load for each expansion
connector's power supply lines VDD and +UB to maximal 1A-currents each
(this is valid for both pins in TOGETHER! That is: Pins 4+6 (+UB) and 3+5
(VDD))!

Any other required signal lines can be soldered to the USRBUS connector pads, which
have been connected 1:1 to the pads on the board, this means the connectors pin1 is
connected to Y1, pin2 to Y2, etc...

The connector pin assignments for the 10pin connectors for the USB-interface are dif-
ferent from each other:

 Main board: USB Interface:

Of course RX and TX must be
interchanged to allow com-
munication. Additionally, the
connector orientations had to
be mirrored to allow a correct
orientation for the protecting
pull-relief of the flat ribbon-
cable's plug.

If the mainboard's connector is not being used for the USB-interface, we may connect
the device to other systems – e.g. for remote controlling the robot by UART from oth-
er Microcontrollers.

- 132 -

RP6 ROBOT SYSTEM - APPENDIX

ADC Connectors:

The figure shows the pin assignments for both free ADC channel connectors.

We did not assemble these connectors and you
may apply use 3-pin connectors with 2.54mm
grid. Be careful in soldering and do not ruin the
mainboard! If you are unexperienced with sol-
dering, please refrain from soldering at the main-
board and prefer to start experiments by using
an expansion board!

You may freely connect two analog or digital sensors to these free ADC channels. The
sensor's output voltages are allowed to range from 0 up to 5V and the connectors
provide the sensors with the 5V supply voltage. It might be wise to additionally solder
a big electrolytic capacitor to the mainboard – values from 220 up to a 470µF (do not
exceed this value! The capacitor's operating voltage should be bigger or equal to 16V)
will be perfectly suitable for most applications.

However you will probably not really need a big electrolytic capacitor, unless you are
working with sensors, which require vast peak currents – e.g. the popular Sharp IR
distance sensors. Decoupling capacitors (100nF) on the mainboard are suitable for
short connection wires only – for long wires, these have to be directly soldered to the
sensor (we advise to directly mount these capacitors at the sensor's connection pads
even for short wires as well!).

All other connections have been clearly labelled on the mainboard. It is a
good idea to have a look at the relevant schematics on the CD!

- 133 -

RP6 ROBOT SYSTEM - APPENDIX

D – Recycling and Safety instructions

Recycling
Disposal of the RP6 in domestic waste is not allowed! For disposal, the robot must be
delivered to the local recycling centre or any other recycling centre for electronics!

Please ask you local sales contact for details.

Safety instructions for batteries
Batteries (accumulators and alkaline cells) must be kept out the reach of children! Do
not let batteries laying around accessible for everyone, as the components may be
swallowed by kids or animals. In case any of the robot's objects has been swallowed,
you must immediately consult a doctor!

Contacts to leaking or damaged batteries may cause chemical burns at the skin. In or-
der to handle these objects, you must be using appropriate protective gloves.

Do not short circuit batteries and do not dispose batteries in a fire. You are not al-
lowed to charge alkaline battery cells! Recharging normal battery cells, may cause
them to explode! Confine yourself to use only special rechargeable accumulator bat-
teries (e.g. NiMH-accumulators) and suitable charging equipment compatible for these
devices!

Recycling instructions for batteries
In analogy to the RP6, the disposal of the batteries (accumulators and alkaline cells)
in domestic waste is not allowed! End users must recycle all defective and used bat-
teries. Therefore, please return your defective, emptied and used batteries to your
dealer or to your local recycling centre for batteries! You are allowed to return accu-
mulator batteries and battery-cells at any store, which also sells these devices.

This way you are meet legal obligations and simultaneously contribute to environ-
mental protection!

- 134 -

	1.Introduction
	1.1.Technical support
	1.2.Scope of delivery
	1.3.Features and technical Data
	1.4.Was can the RP6 do?
	1.5.Application proposals and ideas

	2.The RP6 in detail
	2.1.Control System
	2.1.1.Bootloader

	2.2.Power Supply
	2.3.Sensors
	2.3.1.Battery Voltage Sensor
	2.3.2.Light Sensors (LDRs)
	2.3.3.Anti Collision System (ACS)
	2.3.4.Bumpers
	2.3.5.Motor Current Sensors
	2.3.6.Encoders

	2.4.Drive System
	2.5.Expansion System
	2.5.1.The I²C Bus
	2.5.2.Expansion Connectors

	3.Hardware and Software Setup
	3.1.Safety Instructions
	3.1.1.Electrostatic Discharges and Shorts
	3.1.2.Environment of the Robot
	3.1.3.Supply Voltage

	3.2.Software Setup
	3.2.1.The RP6 CD-ROM
	3.2.2.WinAVR - for Windows
	3.2.3.AVR-GCC, avr-libc and avr-binutils - for Linux
	3.2.3.1.Automatic install script
	3.2.3.2.Manual install procedure
	3.2.3.3.Setting the path

	3.2.4.Java 6
	3.2.4.1.Windows
	3.2.4.2.Linux

	3.2.5.RP6Loader
	3.2.6.RP6 Library, RP6 CONTROL Library and Example programs

	3.3.Connecting the USB Interface – Windows
	3.3.1.Check if the device is properly connected
	3.3.2.Driver uninstall

	3.4.Connecting the USB Interface – Linux
	3.5.Finalizing Software installation
	3.6.Inserting Batteries
	3.7.Charging the Batteries
	3.8.The first test
	3.8.1.Connecting the USB Interface and start RP6Loader

	4.Programming the RP6
	4.1.Configuring the source code Editor
	4.1.1.Creating menu entries
	4.1.2.Configure Syntax Highlighting
	4.1.3.Opening and compiling sample projects

	4.2.Program upload to the RP6
	4.3.Why C? And what's “GCC”?
	4.4.C – Crash Course for beginners
	4.4.1.Literature
	4.4.2.First program
	4.4.3.C basics
	4.4.4.Variables
	4.4.5.Conditional statements
	4.4.6.Switch-Case
	4.4.7.Loops
	4.4.8.Functions
	4.4.9.Arrays, Strings, Pointers...
	4.4.10.Program flow and interrupts
	4.4.11.The C-Preprocessor

	4.5.Makefiles
	4.6.The RP6 function library (RP6Library)
	4.6.1.Initializing the microcontroller
	4.6.2.UART Functions (serial interface)
	4.6.2.1.Transmitting data
	4.6.2.2.Receiving data

	4.6.3.Delay and timer functions
	4.6.4.Status LEDs and Bumpers
	4.6.5.Read ADC values (Battery, Motorcurrent and Light sensors)
	4.6.6.ACS – Anti Collision System
	4.6.7.IRCOMM and RC5 Functions
	4.6.8.Power saving functions
	4.6.9.Drive system functions
	4.6.10.task_RP6System()
	4.6.11.I²C Bus Functions
	4.6.11.1.I²C Slave
	4.6.11.2.I²C Master

	4.7.Example Programs

	5.Experiment Board
	6.Closing words
	APPENDIX
	A - Troubleshooting
	B – Encoder calibration
	C – Connector pinouts
	D – Recycling and Safety instructions

